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Bayesian inference

We observe data y1,...,yn ';i\cjl p(yn|@) and assume 6 ~ p(6).
Here,

> p(y|0) = [TV, p(va|6) is the likelihood,
» p(0) is the prior,

and the goal of Bayesian inference is to obtain the posterior

p(y|0)p(6) p(y|9)p(6)

P(Oly) = p(y)  Jor(y8)p(6)d6




Bayesian inference

We're usually interested in computing another integral

Eg, f(0) = /e F(0)p(0ly)d6 .

so we do what statisticians have been doing forever. We collect
samples and rely on the law of large numbers. Suppose

01,...,0s i p(0ly) (Eg)y|0] < 00) and f(:) a.s. continuous, then
P
> (WLLN) 372, £(85)/S — Eg,f(6)
> (SLLN) 32, f(85)/S = Eg),f(0)

s=1

But where do we find our samples?



Generating (pseudo) random variables

We want to sample Y ~ F(y), where F(-) is the (monotonically
increasing) c.d.f.

Claim 1
Assume we can generate U ~ U(0,1) and compute F~1(-). Then

FH(U) ~ F(y).

Proof.

Pr(F7(U) < y) = Pr(U < F(y)) = F(y)-



Exponential random variables

Ingredients for Y ~ exp(\):
1. p(Y|A) = Aexp(—AY)
2. F(y|\) =Pr(Y <y|A) = [§ Nexp(—AY) =1 —exp(—AY)

3. FY(u) = —A"tlog(l — v)

Easy but extremely limited!



Part 1. Monte Carlo



Rejection sampling \je,n\ Me,qw\mr\‘ 1991

PP
We want to sample from generic p(@) but only know LQ@\.?@)

p*(0) o p(@). We can easily sample from (@) and know a
number M > 0 s.t. p*(0) < Mq(0).

Algorithm for generating 8 ~ p(0):
1. Draw 8" ~ q(@) and U ~ U(0,1)

2.0 0" if U< 5%

The tighter the envelope Mq(0), the better. Suppose

4(6) = p(8) = c*p*(6). Then ? 0@ %Le)w
Pr(Accept) = C*LM’ o2 QV\FS%@&
¢

and expected number of iterations for one sample is
=
(& 7



Validity of rejection sampllng
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Importance sampling

We wish to know Ef(8) = [ (0)p(0)d6. We can evaluate
p*(0) x p(@) and can sample from g(0) easily.

—

Algorithm for generating estimator Ef(0):
1. Draw 01,...,05 ~ q(0)

w(6 *(0s
2. Calculate wy = %, w(0s) = pq((es)) fork=1,...,S.

3. Return Ele wsf(6s)




Validity of importance sampling

By the LLN,

s=1 . . »
Therefore, ( W&% W @);%)

S 1 S
w. _ §Zs=1 W(es)f(OS) a.s. fW(H)f(B)q(H)dO
2 A0 = L szs X )l T T w(6)q(6)d6

- J©)p(6)d6 6)d6 = Ef(6).

.IN .
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Variance of IS estimator

we)= ¢ / =)

An estimator for the variance of W = Zle wsf(05s) is

—

S
Var (Ef(e)) ~ 3 w2(F(8s) — EF(0))°.
s=1 -
The variance can be large if even a single ws is large.

Question: is it better to use a t-distribution to sample a normal or
vice-versa? o

dst
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Part 2. Discrete time, discrete space,
time-homogeneous Markov chains
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The setup

Our Markov chain is a discrete time stochastic process
{6%) s e N} satisfying

Pr(0®)9C=1 9(=2) () () = pr(e)|gs—1)) .

Ingredients:

1. The state space S is a finite or countable set.
2. Initial distribution {pfo)},-eg, satisfying

2.1 p® =Pr(e® = i)

2.2 p“’) >0

23 Yes P,(O) =1
3. Transition probabilities {qij}ijes

3.1 g; = Pr(0) = jlgt~Y =)

32 ;20

3.3 Zjes gij =1
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Finite state space

When § = {1,..., M}, then we can write state probabilities as
row-vectors:

p() = <Pr(0(s) =1),Pr(6%) = 2),...,Pr(O) = M))

Similarly, the transition probabilities g;; form the matrix

qun g2 --- gimMm
Q= Cl-21 q.22 CI2.M
ql\'/ll am2 .. CII\;IIVI
and
p() = pl Q= pt=2AQ% = ... = pOs.
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Perron-Frobenius theorem

Let A be a square matrix, satisfying A > 0 and AK > 0 for some k.

1. There exists a real eigenvalue Apg > 0 with associated
positive left/right eigenvectors.

2. For any other eigenvalue X of A,

Al < |ApFl

3. Apr has multiplicity 1 and corresponds to 1 x 1 Jordan block.

15



Transition matrix

Assume that our transition matrix satisfies Q% > 0 for some k. We
know:

» Q>0

> If 1 =(1,...,1), then Q17 =17, so 1 is an eigenvalue with
right eigenvector 17.

» But the eigenvalues of Q satisfy |A\| < 1 (Gershgorin circle
theorem) .

Therefore Apr = 1 and there exists a positive left eigenvector 7 for
which

7Q=m and 71" =1 (Why?)

We call such a 7 the stationary distribution.

16



Stationary distributions

Because all other eigenvalues are bounded below 1, they die away,
and

im Q=1"n=
S§—> 00
_7'r_

On the other hand, even without the regularity assumption
(Q* > 0), any limiting distribution is a stationary distribution.
Take p an arbitrary limiting distribution:

(assume) lim Q=1"p
S—00
(then) Jlim Q°Q=17pQ
(but) lim Qtl=1"p
S—00

17



Law of large numbers

Consider a Markov chain with finite state space and regular
transition matrix. If a function f(-) is bounded on S, then

S
D F(01)) 2 Enf(0) = f(i)m;.

s=0 ieS

0|+

This result holds irrespective of initial state p(©).
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The punchline

» We construct Markov chains so that they have a specific
stationary distribution 7 (e.g., the posterior).

» By simulating the Markovian dynamics, we may obtain an
empirical estimate of E.f(8)
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Detailed balance

Satisfying the detailed balance equations
miQj = mjQji

is sufficient (assuming regularity, of course) for guaranteeing that
7 is the invariant distribution of the Markov chain:

Y miQy=) mQi=m» Qi=m;
We say:

» The Markov chain is reversible with respect to 7 or

» the Markov chain satisfies detailed balance with respect to 7.

20



Two concepts
A chain is irreducible if for any two states / and j, there exists a k
such that (Qk),-j > 0. Intuitively, this means the transition graph is
connected.

Andrieu et al. 2003
The period of a state i is the gcd of the times at which it is

possible to move from 7 to i. A Markov chain is aperiodic if the
period of all states is 1.

21



Existence and uniqueness of stationary distribution

Finite state space:
Irreducibility 4+ Aperiodicity <= Regular <= Ergodic
Countable state space:

Irreducibility 4+ Aperiodicity + Positive recurrence <= Ergodic

A state is positive recurrent if the expected time to return is finite.

A chain is positive recurrent if all states are positive recurrent.

22



Part 3. Discrete time, continuous space,
time-homogeneous Markov chains

23



Analogies: the Markov property

The Markov property
Pr(0®)0=1) .. 91 9(0)) = pr(()|9(s~1))
now becomes

Pr(8) e AloG=Y .. 61 9) = pr(es) e Ajpl—Y)).
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Analogies: transition kernel

The previous fact that

9 =00 = > Qi Qi Qi

105115+ +5i5—2,is—1

becomes

Pr(6“ e A) = / ps(6))d6") =
// / ©1eE=Dy . q(0016©)p(6)do® . ..do="1de')

i.e., we replace the transition matrix with the integral kernel

/ ps-1(6¢)q(6)] )8l = p,(6().
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Analogies: stationary distributions

The definition of a stationary distribution
Q="
becomes

(60)) / 4(09]6-D)r(6-D)dgls—1) |

i.e., w(+) is an eigenfunction of the transition kernel with
eigenvalue 1.
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Analogies: detailed balance

Detailed balance equations
Qi = Qi
becomes (a.s.)
m(6)q(0°|6) = =(6%)q(6|67).

If the chain satisfies detailed balance with respect to 7 (-), then

[ #©a(6167)d8" = [ w(6)a(6"l6)d6" = x(6),

i.e., w(+) is a stationary distribution of the Markov chain.
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Useful concepts

» An MC is p-irreducible if there is a positive probability of

reaching any set A for which [, p(6)d@ > 0, regardless of
initial state.

» A chain is periodic if it returns to any set A at regular
intervals (gcd of return times > 1). Otherwise it is aperiodic.

A sufficient condition for aperiodicity and p-irreducibility is that

/q(0|0<°>)d9 >0,ve® if /p(e)da >0.
A A

28



Limiting distribution

If a chain has a stationary distribution 7(-) and is m-irreducible and
aperiodic, then

1. m(-) is the unique stationary distribution, and
2. lims_o0 Pr(8®) € A0 = 0*) = [, 7(6)d6,

where we have asserted that the initial state has some value with
probability 1.

29



Existence and uniqueness of stationary distribution
Finite state space:
Irreducibility 4+ Aperiodicity <= Regular <= Ergodic
Countable state space:
Irreducibility + Aperiodicity + Positive recurrence < Ergodic
Continuous state space:

m-Irreducibility + Aperiodicity + Harris recurrence <= Ergodic

A state is Harris recurrent if for any starting value and any set A
with [, 7(6)d@ > 0, the probability A is returned to infinitely often
is 1.
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Consequences of ergodicity

For an ergodic chain with stationary distribution 7(+),

. lim_oo Pr(0®) € A) = [, 7(8)d8, and

2. L322 F(81)) 5 E,.£(6),

provided the expectation is finite.

31



In practice

Three things we can actually check:

1. Sufficient condition for 7(-) being a stationary distribution is
reversibility / detailed balance:

m(60)q(0716) = (67)q(0]6") .

2. Sufficient condition for aperiodicity and m-irreducibility is that

/ q(816©®)do >0, vo© if / 7(6)d6 > 0.
A A

3. Sufficient condition for Harris recurrence is m-irreducibility and
absolute continuity of q(-|60*) wrt 7(-):

/Aw(e)dozo — /Aq(9|0*)d0.

32



Part 4. Classical MCMC

33



Time for a 180°

So far:

Markov chain Monte Carlo:

S+ q('v') == 7T()

S+ () = q(-)

34



In practice

Three things we can actually check:

1. Sufficient condition for 7(-) being a stationary distribution is
reversibility / detailed balance:

m(60)q(0716) = (67)q(0]6") .

2. Sufficient condition for aperiodicity and m-irreducibility is that

/ q(816©®)do >0, vo© if / 7(6)d6 > 0.
A A

3. Sufficient condition for Harris recurrence is m-irreducibility and
absolute continuity of q(-|60*) wrt 7(-):

/Aw(e)dozo — /Aq(9|0*)d0.
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Markov chain Monte Carlo
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Markov chain Monte Carlo

The contour plot shows the conjugate posterior distribution

3
The contour plot shows the conjugate posterior distribution
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The Metropolis algorithm
Our target stationary distribution is 7(6) = p(@|y) o< p*(0]y).

Inputs:
> p*(6ly)
» a proposal distribution h(6*|0) such that h(6|6*) = h(6*|0)

» 90 (chosen or randomly generated however you want)

Fors=1,...,5,
1. Generate 8* ~ h(0]0~1) and U ~ Uni(0,1)
2. Compute
PRSI G ) S C)
p*(0CDy) m(6¢~Y)

3. IFU<a: 0 « g%
ELSE: o) « g(s—1)

38



The Metropolis algorithm

The Metropolis algorithm generates Markov chains that are
reversible wrt the target distribution 7(8):

(0)q(0'16) = (0)h(6'|6)a(6', )
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The Metropolis algorithm

For unbounded targets (why?), the classic symmetric proposal is a
Gaussian centered at the current state:

6* ~ h(6*|6C"1) = Np(6*|6¢—1), X).

40



The Metropolis algorithm

For unbounded targets (why?), the classic symmetric proposal is a
Gaussian centered at the current state:

6* ~ h(6*|6C"1) = Np(6*|6¢—1), X).

41



Metropolis-Hastings
Our target stationary distribution is 7(6) = p(@|y) o< p*(0]y).

Inputs:
> p*(6ly)
» a not-necessarily-symmetric proposal distribution h(6*|0)

» 90 (chosen or randomly generated however you want)

Fors=1,...,5,
1. Generate 8* ~ h(0]0~1) and U ~ Uni(0,1)
2. Compute
a1 P@ly)h(ele”) - m(67)h(6]67)
p*(6©Vy)h(6%|6) w(6¢~1)h(6%|0)

3. IFU<a: 0 « g%
ELSE: o) « g(s—1)

42



Decomposing the parameter space

» Sometimes it is useful /easier to decompose the parameter
space into several components.

» We want to use MH to sample from 7(0) = 7 (01, ...,0p).

» Keep all but one component 6, fixed and use a univariate
proposal to update 4.

43



Decomposing the parameter space

To update the dth component within global MCMC iteration s
with sste (07,000, 0,5

1. Propose & ~ hd(Hj,]&gs), .. ,025_)1, 055_1), ey HS_I))
= hq(67|6)

2. Accept with probability

s S * 571 *
708,69 o 68 Vhg(6]67)

1A
708,68 oCD 6Dy hy(6%(6)

44



Decomposing the parameter space

» We can decompose into blocks of components.
» We can use a random scan instead of sequential updates.

» If w(0) invariant to hy, hy, then 7(0) invariant to hy o hs.

The contour plot shows the conjugate posterior distribution
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Neat trick!

Suppose we divide @ into two components: 8 = (61, 62) and that
h1(01|62) = 7(61]02) = 7(0)/7(682) = 7(6) //W(e)del
and analogous for hy(02|601). Then the MH acceptance criterion is
o)
% s—1 s— s—1
(07,657 w(6F Vo)

s—1 s— % s—1

w67V, 65Y)  x(o;l68 )

(07,65 ") w(6F V.68 a(eFY)
-1 o(-1)5 ~ Y P N P PRy
7T(91 792 ) 77(01,02 ) 7T(92 )

a=1A

and similar for 9&5)
rejected proposals.

. Thus, we can avoid wasted compute time on

46



Neat trick!

But when can we use it?
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Part 5. Introduction (?) to Bayesian inference

48



Bayesian inference

We observe data y1,...,yn ';i\cjl p(yn|@) and assume 6 ~ p(6).
Here,

> p(y|0) = [TV, p(va|6) is the likelihood,
» p(0) is the prior,

and the goal of Bayesian inference is to obtain the posterior

p(y|0)p(6) p(y|9)p(6)

P(Oly) = p(y)  Jor(y8)p(6)d6

49



Conjugate priors

» Conjugacy refers to the situation when the prior p(@) and
posterior p(@|y) belong to the same distribution (albeit with
“updated” parameters).

» When one combines a conjugate prior with a specific
likelihood, one may obtain the posterior in closed form, no
computations necessary!

» Unfortunately, conjugacy only works for a limited class of
simple models.

50



Exponential family distributions

» Exponential family distributions include the normal, beta,
Bernoulli, gamma and Poisson distributions.

» If y follows an exponential family distribution, then
p(y16) = h(y)g(68) exp (4(8)Ts(y)) -

» The joint distribution for independent y = (y1,...,yn) is

N
p(y|0) = (H h(Yn ) 0) exp <¢(9)T25(yn)> :

n=1

» ¢(0) is the natural parameter and t(y) = >, s(ya) is the
sufficient statistic.

51



Conjugate priors

Again, our likelihood is

p(y16) ox g"(0) exp (9(8)t(y)) .

and we specify @ follows an exponential family distribution with
prior

p(6) o g(6) exp (6(8)Tv) .
It follows that

p(Oly) x g"(8) exp (9(8) T (¢(y) + 1)) -

52



Beta-binomial model
p(y10,N) oc ¢ (1 — )V o< (1 - 0)" exp (y log (1?0))
= g(0)=1-6 and ¢(f)=log <&>

—  p(6) x (1 - 0)exp (Vlog <£0>> o (1 — )19”

> P(@)Ebeta(a:y+175:n_y+l)

—  p(fly) o (1 — 9)1=vFEN=Y)grty
= p(Oly) =beta(a+y, B+ N—y)
= E(bly) =(a+y)/(a+ B+ N)

53



Univariate normal, known variance

1 NG 6
2 _ N2 _ —
p(ylf,0°) x exp (‘202 §n (yn—0) ) & exp ( 252 + o2 ;y">

0% o 1
— p(9) X exp (—202 02> X exp < 277_02 0 ,LLO >
6? 0 NGZ 0
2 Ho
= o en( -y oo (2 7 2“)
11 N\ o (Ko, 2nYn

B o

Zyn R VAN A T VA N
= 2 2T32) 2t
TO TO o 7'0 g
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Univariate normal, known mean

2
2 2\—a—N/2-1 _ﬁ > on(yn — )
= p(o°ly,0) x (c°) exp 2 + 252
—r—1 o Zn Yn — 0)2
=TI <a + > , B+ > )
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Limitations to conjugacy

» We rarely know the variance but not the mean (and
vice-versa).

» We don't have the joint posterior for both mean and variance
in closed form.

» All we know is the conditional posteriors for either parameter.
» It turns out, this kind of situation is rather common for

Bayesian hierarchical models that arise out of pieced together
exponential family distributions.
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Part 6. Classical MCMC (again)
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Neat trick!

Suppose we divide @ into two components: 8 = (61, 62) and that
h1(01|62) = 7(61]02) = 7(0)/7(682) = 7(6) //W(e)del
and analogous for hy(02|601). Then the MH acceptance criterion is
o)
% s—1 s— s—1
(07,657 w(6F Vo)

s—1 s— % s—1

w67V, 65Y)  x(o;l68 )

(07,65 ") w(6F V.68 a(eFY)
-1 o(-1)5 ~ Y P N P PRy
7T(91 792 ) 77(01,02 ) 7T(92 )

a=1A

and similar for 9&5)
rejected proposals.

. Thus, we can avoid wasted compute time on
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Neat trick!

But when can we use it?
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A Gibbs sampler

We assume our data y = (yi1,...,yn) i N(6,02) and priors
6 ~ N(uo,7¢) and o ~T Y, 3).

We wish to generate samples from p(6,o2|y). Initialize (®) and
0©, Fors=1,...,8S,

1. Draw from p(fly, 0?) with 02 = o

(1 NN /1 NN\
0 ~ N M*ngz"zy St 2) 2tz ‘
’7-0 g 7'0 g TO g

2. Draw from p(c?|y, #) with § = 6(5):

)2
e O

2(s—1).

No need for the accept/reject step!
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Another Gibbs sampler
We assume our data y, n N(b,,0%), n=1,...,N,

0, % N(6o,72) and 6o ~ N(0,10).

We wish to sample from p(90, 01,...,0nly, 02, 7%). After
initialization, for s =1,...,S:

1. Draw from p(90|y,7' 9(5 1) . .,05\771)):

. o VN /N 1Nt /N 1\?
on((E) 3o (50
75 75 10 75 10

2. Forn=1,...,N, draw from p(0,|y,o?, 72 0(5))

(s) -1 -1
(s) A Yn 1 1 1 1
QISNN<<T2 +U2> <7_2+02 s ?—F; .
0 0 0
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Pros and cons of Gibbs sampling

Pros:

» No wasted compute time on rejected proposals.
» For big data, factorization helps

1. data storage
2. parallel computing.

Cons:

» You're only as strong as your weakest link. (But isn't this
always true?)

» Coding by hand can be time intensive. (But isn't there
software for that?)

» Conditional posteriors aren't always known. (But isn't there
Metropolis-within-Gibbs for that?)
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