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Abstract We review adaptive Markov chain Monte Carlo
algorithms (MCMC) as a mean to optimise their perfor-
mance. Using simple toy examples we review their theo-
retical underpinnings, and in particular show why adaptive
MCMC algorithms might fail when some fundamental prop-
erties are not satisfied. This leads to guidelines concern-
ing the design of correct algorithms. We then review cri-
teria and the useful framework of stochastic approximation,
which allows one to systematically optimise generally used
criteria, but also analyse the properties of adaptive MCMC
algorithms. We then propose a series of novel adaptive al-
gorithms which prove to be robust and reliable in practice.
These algorithms are applied to artificial and high dimen-
sional scenarios, but also to the classic mine disaster dataset
inference problem.

Keywords MCMC · Adaptive MCMC · Controlled
Markov chain · Stochastic approximation

1 Introduction

Markov chain Monte Carlo (MCMC) is a general strategy
for generating samples {Xi, i = 0,1, . . .} from complex
high-dimensional distributions, say π defined on a space
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X ⊂ R
nx (assumed for simplicity to have a density with re-

spect to the Lebesgue measure, also denoted π ), from which
integrals of the type

I (f ) :=
∫

X
f (x)π (x) dx,

for some π -integrable functions X → R
nf can be approxi-

mated using the estimator

ÎN (f ) := 1

N

N∑
i=1

f (Xi) , (1)

provided that the Markov chain generated with, say, transi-
tion P is ergodic i.e. it is guaranteed to eventually produce
samples {Xi} distributed according to π . Throughout this
review we will refer, in broad terms, to the consistency of
such estimates and the convergence of the distribution of Xi

to π as π -ergodicity. The main building block of this class
of algorithms is the Metropolis-Hastings (MH) algorithm. It
requires the definition of a family of proposal distributions
{q(x, ·), x ∈ X} whose role is to generate possible transitions
for the Markov chain, say from X to Y , which are then ac-
cepted or rejected according to the probability

α (X,Y ) = min

{
1,

π (Y ) q (Y,X)

π (X)q (X,Y )

}
.

The simplicity and universality of this algorithm are both
its strength and weakness. Indeed, the choice of the pro-
posal distribution is crucial: the statistical properties of the
Markov chain heavily depend upon this choice, an inade-
quate choice resulting in possibly poor performance of the
Monte Carlo estimators. For example, in the toy case where
nx = 1 and the normal symmetric random walk Metropo-
lis algorithm (N-SRWM) is used to produce transitions, the
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density of the proposal distribution is of the form

qθ (x, y) = 1√
2πθ2

exp

(−1

2θ2 (y − x)2
)

,

where θ2 is the variance of the proposed increments, hence
defining a Markov transition probability Pθ . The variance
of the corresponding estimator Î θ

N (f ), which we wish to be
as small as possible for the purpose of efficiency, is well
known to be typically unsatisfactory for values of θ2 that
are either “too small or too large” in comparison to optimal
or suboptimal value(s). In more realistic scenarios, MCMC
algorithms are in general combinations of several MH up-
dates {Pk,θ , k = 1, . . . , n, θ ∈ �} for some set �, with each
having its own parametrised proposal distribution qk,θ for
k = 1, . . . , n and sharing π as common invariant distribu-
tion. These transition probabilities are usually designed in
order to capture various features of the target distribution π

and in general chosen to complement one another. Such a
combination can for example take the form of a mixture of
different strategies, i.e.

Pθ (x, dy) =
n∑

k=1

wk(θ)Pk,θ (x, dy) , (2)

where for any θ ∈ �,
∑n

k=1 wk(θ) = 1, wk(θ) ≥ 0, but can
also, for example, take the form of combinations (i.e. prod-
ucts of transition matrices in the discrete case) such as

Pθ (x, dy) = P1,θP2,θ · · ·Pn,θ (x, dy).

Both examples are particular cases of the class of Markov
transition probabilities Pθ on which we shall focus in
this paper: they are characterised by the fact that they
(a) belong to a family of parametrised transition proba-
bilities {Pθ , θ ∈ �} (for some problem dependent set �,
� = (0,+∞) in the toy example above) (b) for all θ ∈ � π

is an invariant distribution for Pθ , which is assumed to be
ergodic (c) the performance of Pθ , for example the variance
of Î θ

N (f ) above, is sensitive to the choice of θ .
Our aim in this paper is to review the theoretical under-

pinnings and recent methodological advances in the area
of computer algorithms that aim to “optimise” such para-
metrised MCMC transition probabilities in order to lead
to computationally efficient and reliable procedures. As we
shall see we also suggest new algorithms. One should note at
this point that in some situations of interest, such as temper-
ing type algorithms (Geyer and Thompson 1995), property
(b) above might be violated and instead the invariant distrib-
ution of Pθ might depend on θ ∈ � (although only a non θ -
dependent feature of this distribution πθ might be of interest
to us for practical purposes). We will not consider this case
in depth here, but simply note that most of the arguments
and ideas presented hereafter generally carry on to this

slightly more complex scenario e.g. (Benveniste et al. 1990;
Atchadé and Rosenthal 2005).

The choice of a criterion to optimise is clearly the first
decision that needs to be made in practice. We discuss this
issue in Sect. 4.1 where we point out that most sensible opti-
mality or suboptimality criteria can be expressed in terms of
expectations with respect to the steady state-distributions of
Markov chains generated by Pθ for θ ∈ � fixed, and make
new suggestions in Sect. 5 which are subsequently illus-
trated on examples in Sect. 6. We will denote by θ∗ a generic
optimal value for our criteria, which is always assumed to
exist hereafter.

In order to optimise such criteria, or even simply find
suboptimal values for θ , one could suggest to sequentially
run a standard MCMC algorithm with transition Pθ for a
set of values of θ (either predefined or defined sequentially)
and compute the criterion of interest (or its derivative etc.)
once we have evidence that equilibrium has been reached.
This can naturally be wasteful and we will rather focus here
on a technique which belongs to the well known class of
processes called controlled Markov chains (Borkar 1990)
in the engineering literature, which we will refer to as con-
trolled MCMC (Andrieu and Robert 2001), due to their nat-
ural filiation. More precisely we will assume that the algo-
rithm proceeds as follows. Given a family of transition prob-
abilities {Pθ , θ ∈ �} defined on X such that for any θ ∈ �,
πPθ = π (meaning that if Xi ∼ π , then Xi+1 ∼ π ,Xi+2 ∼
π, . . .) and given a family of (possibly random) mappings
{θi : � × Xi+1 → �, i = 1, . . .}, which encodes what is
meant by optimality by the user, the most general form of
a controlled MCMC proceeds as follows:

Algorithm 1 Controlled Markov chain Monte Carlo
• Sample initial values θ0,X0 ∈ � × X.
• Iteration i + 1 (i ≥ 0), given θi = θi(θ0,X0, . . . ,Xi) from

iteration i

1. Sample Xi+1|(θ0,X0, . . . ,Xi) ∼ Pθi
(Xi, ·).

2. Compute θi+1 = θi+1(θ0,X0, . . . ,Xi+1).

In Sect. 4.2 we will focus our results to particular map-
pings well suited to our purpose of computationally efficient
sequential updating of {θi} for MCMC algorithms, which
rely on the Robbins-Monro update and more generally on
the stochastic approximation framework (Benveniste et al.
1990). However, before embarking on the description of
practical procedures to optimise MCMC transition probabil-
ities we will first investigate, using mostly elementary un-
dergraduate level tools, some of the theoretical ergodicity
properties of controlled MCMC algorithms.

Indeed, as we shall see, despite the assumption that for
any θ ∈ �, πPθ = π , adaptation in the context of MCMC
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using the controlled approach leads to complications. In
fact, this type of adaptation can easily perturb the ergodicity
properties of MCMC algorithms. In particular algorithms of
this type will in most cases lead to the loss of π as an invari-
ant distribution of the process {Xi}, which intuitively should
be the minimum requirement to produce samples from π

and lead to consistent estimators. Note also that when not
carefully designed such controlled MCMC can lead to tran-
sient processes or processes such that ÎN (f ) is not consis-
tent. Studying the convergence properties of such processes
naturally raises the question of the relevance of such devel-
opments in the present context. Indeed it is often argued that
one might simply stop adaptation once we have enough evi-
dence that {θi} has reached a satisfactory optimal or subop-
timal value of θ and then simply use samples produced by a
standard MCMC algorithm using such a fixed good value θ̃ .
No new theory should then be required. While apparently
valid, this remark ignores the fact that most criteria of in-
terest depend explicitly on features of π , which can only
be evaluated with. . . MCMC algorithms. For example, as
mentioned above most known and useful criteria can be for-
mulated as expectations with respect to distributions which
usually explicitly involve π .

Optimising such criteria, or finding suboptimal values
of θ∗, thus requires one to be able to sample—perhaps ap-
proximately or asymptotically—from π , which in the con-
text of controlled MCMC requires one to ensure that the
process described above can, in principle, achieve this aim.
This, in our opinion, motivates and justifies the need for
such theoretical developments as they establish whether or
not controlled MCMC can, again in principle, optimise such
π -dependent criteria. Note that convergence of {θi} should
itself not be overlooked since, in light of our earlier discus-
sion of the univariate N-SRWM, optimisation of {Pθ } is our
primary goal and should be part of our theoretical develop-
ments. Note that users wary of the perturbation to ergodic-
ity brought by adaptation might naturally choose to “freeze”
{θi} to a value θτ beyond an iteration τ and consider only
samples produced by the induced Markov chain for their in-
ference problem. A stopping rule is described in Sect. 4.2.2.
In fact, as we shall see it is possible to run the two proce-
dures simultaneously.

Finally, whereas optimising an MCMC algorithm seems
a legitimate thing to do, one might wonder if it is compu-
tationally worth adapting. This is a very difficult question
for which there is probably no straight answer. The view we
adopt here is that such optimisation schemes are very useful
tools to design or help the design of efficient MCMC algo-
rithms which, while leading to some additional computation,
have the potential to spare the MCMC user significant im-
plementation time.

The paper is organised as follows. In Sect. 2 we provide
toy examples that illustrate the difficulties introduced by the

adaptation of MCMC algorithms. In Sect. 3 we discuss why
one might expect vanishing adaptation to lead to processes
such that {Xi} can be used in order to estimate expectation
with respect to π . This section might be skipped on a first
reading. In Sect. 4 we first discuss various natural criteria
which are motivated by theory, but to some extent simplified
in order to lead to useful and implementable algorithms. We
then go on to describe how the standard framework of sto-
chastic approximation, of which the Robbins-Monro recur-
sion is the cornerstone, provides us with a systematic frame-
work to design families of mappings {θi} in a recursive man-
ner and understand their properties. In Sect. 5 we present a
series of novel adaptive algorithms which circumvent some
of the caveats of existing procedures. These algorithms are
applied to various examples in Sect. 6.

2 The trouble with adaptation

In this section we first illustrate the loss of π -ergodicity of
controlled MCMC with the help of two simple toy examples.
The level of technicality required for these two examples
is that of a basic undergraduate course on Markov chains.
Despite their simplicity, these examples suggest that vanish-
ing adaptation (a term made more precise later) might pre-
serve asymptotic π -ergodicity. We then finish this section
by formulating more precisely the fundamental difference
between standard MCMC algorithms and their controlled
counterparts which affects the invariant distribution of the
algorithm. This requires the introduction of some additional
notation used in Sect. 4 and a basic understanding of expec-
tations to justify vanishing adaptation, but does not signifi-
cantly raise the level of technicality.

Consider the following toy example, suggested in An-
drieu and Moulines (2006), where X = {1,2} and π =
(1/2,1/2) (it is understood here that for such a case we will
abuse notation and use π for the vector of values of π and
Pθ for the transition matrix) and where the family of transi-
tion probabilities under consideration is of the form, for any
θ ∈ � := (0,1)

Pθ =
[
Pθ(Xi = 1,Xi+1 = 1) Pθ (Xi = 1,Xi+1 = 2)

Pθ (Xi = 2,Xi+1 = 1) Pθ (Xi = 2,Xi+1 = 2)

]

=
[

θ 1 − θ

1 − θ θ

]
. (3)

It is clear that for any θ ∈ �, π is a left eigenvector of Pθ

with eigenvalue 1,

πPθ = π,

i.e. π is an invariant distribution of Pθ . For any θ ∈ � the
Markov chain is obviously irreducible and aperiodic, and
by standard theory is therefore ergodic, i.e. for any starting
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probability distribution μ,

lim
i→∞μP i

θ = π

(with P i
θ the i-th power of Pθ ), and for any finite real valued

function f

lim
N→∞

1

N

N∑
i=1

f (Xi) = Eπ (f (X)),

almost surely, where for any probability distribution ν, Eν

represents the expectation operator with respect to ν. Now
assume that θ is adapted to the current state in order to sam-
ple the next state of the chain, and assume for now that
this adaptation is a time invariant function of the previous
state of the MC. More precisely assume that for any i ≥ 1
the transition from Xi to Xi+1 is parametrised by θ(Xi),
where θ : X → �. The remarkable property, specific to this
purely pedagogical example, is that {Xi} is still in this case
a time homogeneous Markov chain with transition proba-
bility

P̌ (Xi = a,Xi+1 = b) := Pθ(a)(Xi = a,Xi+1 = b)

for a, b ∈ X, resulting in the time homogeneous transition
matrix

P̌ :=
[

θ(1) 1 − θ(1)

1 − θ(2) θ(2)

]
. (4)

Naturally the symmetry of Pθ above is lost and one can
check that the invariant distribution of P̌ is

π̌ =
(

1 − θ(2)

2 − θ(1) − θ(2)
,

1 − θ(1)

2 − θ(1) − θ(2)

)

= π,

in general. For θ(1), θ(2) ∈ � the time homogeneous
Markov chain will be ergodic, but will fail to converge to
π as soon as θ(1) 
= θ(2), that is as soon as there is depen-
dence on the current state. As we shall see, the principle of
vanishing adaptation consists of the present toy example of
making both θ(1) and θ(2) time dependent (deterministi-
cally for simplicity here), denoted θi(1) and θi(2) at itera-
tion i, and ensure that as i → ∞, |θi(1) − θi(2)| vanishes.
Indeed, while {θi(1)} and {θi(2)} are allowed to evolve for-
ever (and maybe not converge) the corresponding transition
probabilities {P̌i := Pθi(Xi)} have invariant distributions {π̌i}
convergent to π . We might hence expect one to recover π -
ergodicity. In fact in the present case standard theory for
non-homogeneous Markov chains can be used in order to
find conditions on {θi} that ensure ergodicity, but we do not
pursue this in depth here.

It could be argued, and this is sometimes suggested, that
the problem with the example above is that in order to pre-
serve π as a marginal distribution, θ should not depend on
Xi for the transition to Xi+1, but on X0, . . . ,Xi−1 only. For
simplicity assume that the dependence is on Xi−1 only. Then

it is sometimes argued that since

[
π(Xi = 1)

π(Xi = 2)

]T

×
[

Pθ(Xi−1)(Xi= 1,Xi+1= 1) Pθ(Xi−1)(Xi= 1,Xi+1= 2)

Pθ(Xi−1)(Xi= 2,Xi+1= 1) Pθ(Xi−1)(Xi= 2,Xi+1= 2)

]

=
[

π(Xi = 1)

π(Xi = 2)

]T [
θ(Xi−1) 1 − θ(Xi−1)

1 − θ(Xi−1) θ(Xi−1)

]

= [
π(Xi+1 = 1), π(Xi+1 = 2)

]
,

then Xi+1,Xi+2, . . . are all marginally distributed accord-
ing to π . Although this calculation is correct, the underly-
ing reasoning is naturally incorrect in general. This can be
checked in two ways. First through a counterexample which
only requires elementary arguments. Indeed in the situation
just outlined, the law of Xi+1 given θ0,X0, . . . ,Xi−1,Xi

is Pθ(Xi−1)(Xi,Xi+1 ∈ ·), from which we deduce that Zi =
(Zi(1),Zi(2)) = (Xi,Xi−1) is a time homogeneous Markov
chain with transition

Pθ(Zi(2))(Zi(1),Zi+1(1)) I{Zi+1(2) = Zi(1)},

where for a set A, IA denotes its indicator function. De-
noting the states 1̄ := (1,1), 2̄ := (1,2), 3̄ := (2,1) and
4̄ := (2,2), the transition matrix of the time homogeneous
Markov chain is

P̌ =

⎡
⎢⎢⎣

θ(1) 0 1 − θ(1) 0
θ(2) 0 1 − θ(2) 0

0 1 − θ(1) 0 θ(1)

0 1 − θ(2) 0 θ(2)

⎤
⎥⎥⎦

and it can be directly checked that the marginal invariant
distribution of Zi(1) is

π̌ =
(

2 + θ(2)

1 − θ(1)
+ θ(1)

1 − θ(2)

)−1

×
[

1+θ(2)−θ(1)
1−θ(1)

1+θ(1)−θ(2)
1−θ(2)

]

= (1/2, 1/2),

in general. The second and more informative approach con-
sists of considering the actual distribution of the process
generated by a controlled MCMC. Let us denote Ě∗ the
expectation for the process started at some arbitrary θ, x ∈
� × X. This operator is particularly useful to describe the
expectation of ψ(Xi,Xi+1, . . .) for any i ≥ 1 and any func-
tion ψ : Xkψ → R, Ě∗(ψ(Xi,Xi+1, . . . ,Xi+kψ−1)). More
precisely it allows one to clearly express the dependence of
θi(θ0,X0, . . . ,Xi) on the past θ0,X0, . . . ,Xi of the process.
Indeed for any f : X → R, using the tower property of
expectations and the definition of controlled MCMC given
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in the introduction, we find that

Ě∗ (f (Xi+1)) = Ě∗
(
Ě∗ (f (Xi+1)|θ0,X0, . . . ,Xi)

)

= Ě∗
(∫

X
Pθi(X0,...,Xi)(Xi, dx)f (x)

)
, (5)

which is another way of saying that the distribution of
Xi+1 is that of a random variable sampled, conditional
upon θ0,X0, . . . ,Xi , according to the random transition
Pθi(X0,...,Xi)(Xi,Xi+1 ∈ ·), where the pair θi(θ0,X0,

. . . ,Xi), Xi is randomly drawn from a distribution com-
pletely determined by the possible histories θ0,X0, . . . ,Xi .
In the case where X is a finite discrete set, writing this
relation concisely as the familiar product of a row vector
and a transition matrix as above would require one to de-
termine the (possibly very large) set of values for the pair
θi(θ0,X0, . . . ,Xi), Xi (say Wi ), the vector representing the
probability distribution of all these pairs as well as the tran-
sition matrix from Wi to X. The introduction of the expec-
tation allows one to bypass these conceptual and notational
difficulties. We will hereafter denote

ϕ(θ0,X0, . . . ,Xi) :=
∫

X
Pθi(θ0,X0,...,Xi)(Xi, dx)f (x),

and whenever possible will drop unnecessary arguments i.e.
arguments of ϕ which do not affect its values.

The possibly complex dependence on θi(θ0,X0, . . . ,Xi),
Xi of the transition of the process to Xi+1 needs to be con-
trasted with the case of standard MCMC algorithms. Indeed,
in this situation the randomness of the transition probability
only stems from Xi . This turns out to be a major advantage
when it comes to invariant distributions. Let us assume that
for some i ≥ 1 Ě∗(g(Xi)) = Eπ (g(X)) for all π -integrable
functions g. Then according to the identity in (5), for any
given θ ∈ � and θi = θ for all i ≥ 0 a standard MCMC al-
gorithm has the well known and fundamental property

Ě∗(f (Xi+1)) = Ě∗ (ϕ(θ,Xi))

= Eπ (ϕ(θ,X))

=
∫

X×X
π(dx)Pθ (x, dy)f (y) = Eπ (f (X)) ,

where the second equality stems from the assumption
Ě∗(g(Xi)) = Eπ (g(X)) and the last equality is obtained by
the assumed invariance of π for Pθ for any θ ∈ �. Now
we turn to the controlled MCMC process and focus for
simplicity on the case θi(θ0,X0, . . . ,Xi) = θ(Xi−1), cor-
responding to our counterexample. Assume that for some
i ≥ 1 Xi is marginally distributed according to π , i.e. for
any g : X → R, Ě∗(g(Xi)) = Eπ (g(X)), then we would like
to check if Ě∗(g(Xj )) = Eπ (g(X)) for all j ≥ i. However

using the tower property of expectations in order to exploit
the property Ě∗(g(Xi)) = Eπ (g(X)),

Ě∗(f (Xi+1)) = Ě∗ (ϕ(Xi−1,Xi))

= Ě∗
(
Ě∗ (ϕ(Xi−1,Xi)|Xi)

)

= Eπ

(
Ě∗ (ϕ(Xi−1,X)|X)

)
.

Now it would be tempting to use the stationarity assumption
in the last expression,

Eπ (ϕ(Xi−1,X)) =
∫

X×X
π(dx)Pθ(Xi−1)(x, dy)f (y)

= Eπ (f (X)).

This is however not possible due to the presence of the
conditional expectation Ě∗(·|X) (which crucially depends
on X) and conclude that in general

Ě∗(f (Xi+1))


= Ě∗
(

Eπ

(∫
X
Pθ(θ0,X0,Xi−1)(X,dxi+1)f (xi+1)

))
.

The misconception that this inequality might be an equality
is at the root of the incorrect reasoning outlined earlier. This
problem naturally extends to more general situations.

Vanishing adaptation seems, intuitively, to offer the pos-
sibility to circumvent the problem of the loss of π as in-
variant distribution. However, as illustrated by the follow-
ing toy example, vanishing adaptation might come with
its own shortcomings. Consider a (deterministic) sequence
{θi} ⊂ (−1,1)N and for simplicity first consider the non-
homogeneous, and non-adaptive, Markov chain {Xi} with
transition Pθi

at iteration i ≥ 1, where Pθ is given by (3),
and initial distribution (μ,1 − μ) for μ ∈ [0,1]. One can
easily check that for any n ≥ 1 the product of matrices
Pθ1 × · · · × Pθn has the simple expression

Pθ1 × · · · × Pθn

= 1

2

[
1 +∏n

i=1(2θi − 1) 1 −∏n
i=1(2θi − 1)

1 −∏n
i=1(2θi − 1) 1 +∏n

i=1(2θi − 1)

]
.

As a result one deduces that the distribution of Xn is

1

2

[
1 + (2μ − 1)

∏n
i=1(2θi − 1) 1 − (2μ − 1)

∏n
i=1(2θi − 1)

]
.

Now if θi → 0 (resp. θi → 1) and
∑∞

i=1 θi < +∞ (resp.∑∞
i=1(1 − θi) < +∞ ), that is convergence to either 0 or 1

of {θi} is “too fast” , then limn→∞
∏n

i=1(2θi − 1) 
= 0 and
as a consequence, whenever μ 
= 1/2, the distribution of Xn

does not converge to π = (1/2,1/2). Similar developments
are possible for the toy adaptive MCMC algorithm given by
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the transition matrix P̌ in (4), at the expense of extra tech-
nical complications, and lead to the same conclusions. This
toy example points to potential difficulties encountered by
controlled MCMC algorithms that exploit vanishing adapta-
tion: whereas π -ergodicity of Pθ is ensured for any θ ∈ �,
this property might be lost if the sequence {θi} wanders to-
wards “bad” values of θ for which convergence to equilib-
rium of the corresponding fixed parameter Markov chains
Pθ might take an arbitrarily long time.

This point is detailed in the next section, but we first turn
to a discussion concerning the possibility of using vanishing
adaptation in order to circumvent the loss of invariance of π

by controlled MCMC.

3 Vanishing adaptation and convergence

As suggested in the previous section, vanishing adaptation,
that is ensuring that θi depends less and less on recently vis-
ited states of the chain {Xi} might be a way of designing
controlled MCMC algorithms which produce samples as-
ymptotically distributed according to π . In this section we
provide the basic arguments and principles that underpin the
validity of controlled MCMC with vanishing adaptation. We
however do not provide directly applicable technical con-
ditions here that ensure the validity of such algorithms -
more details can be found in Holden (1998), Atchadé and
Rosenthal (2005), Andrieu and Moulines (2006), Roberts
and Rosenthal (2006), Bai et al. (2008) and Atchadé and
Fort (2008). The interest of dedicating some attention to this
point here is twofold. First it provides useful guidelines as
to what the desirable properties of a valid controlled MCMC
algorithm should be, and hence help design efficient algo-
rithms. Secondly it points to some difficulties with the ex-
isting theory which is not able to fully explain the observed
stability properties of numerous controlled algorithms, a fact
sometimes overlooked.

3.1 Principle of the analysis

Existing approaches to prove that ergodicity might be pre-
served under vanishing adaptation all rely on the same prin-
ciple, which we detail in this section. The differences be-
tween the various existing contributions lies primarily in the
assumptions, which are discussed in the text. With the nota-
tion introduced in the previous section, we are interested in
the behaviour of the difference

|Ě∗(f (Xi)) − Eπ (f (X))|
as i → ∞ for any f : X → R. Although general functions
can be considered (Atchadé and Rosenthal 2005; Andrieu
and Moulines 2006) and (Atchadé and Fort 2008), we will
here assume for simplicity of exposition that |f | ≤ 1. The

study of this term is carried out by comparing the process
of interest to a process which coincides with {Xk} up to
some time ki < i but becomes a time homogeneous Markov
chain with “frozen” transition probability Pθki

from this time
instant onwards. (We hereafter use the following standard
notation P k[f ](x) = P kf (x) for any f : X → R

nf and
x ∈ X defined recursively as P 0f (x) = f (x), Pf (x) := ∫

X
P(x, dy)f (y) and P k+1f (x) = P [P kf ](x) for k ≥ 1. In
the finite discrete case this corresponds to considering pow-
ers P k of the transition matrix P and right multiplying with
a vector f .) Denoting P

i−ki

θki
f (Xki

) the expectation of f

after i − ki iterations of the “frozen” time homogeneous
Markov transition probability Pθki

initialised with Xki
at

time ki and conditional upon θ0,X0,X1, . . . ,Xki
, this trans-

lates into the fundamental decomposition

Ě∗(f (Xi)) − Eπ (f (X))

= Ě∗
(
P

i−ki

θki
f (Xki

) − π(f )
)

+ Ě∗
(
f (Xi) − P

i−ki

θki
f (Xki

)
)

, (6)

where the second term corresponds to the aforementioned
comparison and the first term is a simple remainder term.

Perhaps not surprisingly the convergence to zero of the
first term, provided that i − ki → ∞ as i → ∞, depends
on the ergodicity of the non-adaptive MCMC chain with
fixed parameter θ ∈ �, i.e. requires at least that for any
θ, x ∈ �×X, limk→∞ |P k

θ f (x)−π(f )| = 0. However since
both θki

and Xki
are random and possibly time dependent,

this type of simple convergence is not sufficient to ensure
convergence of this term. One could suggest the following
uniform convergence condition

lim
k→∞ sup

θ,x∈�×X
|P k

θ f (x) − Eπ (f (X))| = 0, (7)

which although mathematically convenient is unrealistic in
most scenarios of interest. The first toy example of Sect. 2
provides us with such a simple counterexample. Indeed, at
least intuitively, convergence of this Markov chain to equi-
librium can be made arbitrarily slow for values of θ ∈ (0,1)

arbitrarily close to either 0 or 1. This negative property un-
fortunately carries on to more realistic scenarios. For ex-
ample the normal symmetric random walk Metropolis al-
gorithm described in Sect. 1 can in most situations of in-
terest be made arbitrarily slow as the variance θ2 is made
arbitrarily small or large. This turns out to be a fundamental
difficulty of the “chicken and egg” type in the study of the
stability of such processes, which is sometimes overlooked.
Indeed in order to ensure ergodicity, {θi} should stay away
from poor values of the parameter θ ∈ �, but proving the
stability of {θi} might often require establishing the ergod-
icity of the chain {Xi}; see Andrieu and Moulines (2006)
and Andrieu and Tadić (2007) where alternative conditions
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are also suggested. We will come back to this point af-
ter examining the second term of the decomposition above.
Note that “locally uniform” such conditions (i.e. where �

in (7) is replaced by some subsets K ⊂ � and the rate
of convergence might be slower) are however satisfied by
many algorithms—this property is exploited in Andrieu and
Moulines (2006), Andrieu and Tadić (2007), Atchadé and
Fort (2008) and Bai et al. (2008) although this is not explicit
in the latter.

The second term in the decomposition can be analysed by
“interpolating” the true process and its Markovian approxi-
mation using the following telescoping sum

Ě∗ (f (Xi)) − Ě∗
(
P

i−ki

θki
f (Xki

)
)

=
i−1∑
j=ki

Ě∗
(
P

i−j−1
θki

f (Xj+1)
)

− Ě∗
(
P

i−j
θki

f (Xj )
)

,

which can be easily understood as follows. Each term
of the sum is the difference of the expectations of (a) a
process that adapts up to time j + 1 > ki and then freezes
and “becomes Markovian” with transition probability Pθki

given the history θ0,X0,X1, . . . ,Xj+1 (and hence θki
=

θki
(θ0,X0,X1, . . . ,Xki

)) between time j + 1 and time i

(b) and likewise for the second term, albeit between time j

and i. Hence the two terms involved only differ in that at
time j the first term updates the chain with θj while the
second term uses θki

, which can be concisely expressed as
follows (thinking about the difference between two products
of matrices in the discrete case might be helpful),

Ě∗
(
P

i−j−1
θki

f (Xj+1)
)

− Ě∗
(
P

i−j
θki

f (Xj )
)

= Ě∗
(
Pθj

P
i−j−1
θki

f (Xj )
)

− Ě∗
(
P

i−j
θki

f (Xj )
)

= Ě∗
((

Pθj
− Pθki

)
P

i−j−1
θki

f (Xj )
)

.

The role of vanishing adaptation should now be appar-
ent. Provided that the transition probability Pθ is suffi-
ciently smooth in θ and that the variations of {θi} vanish
as i → +∞ (in some unspecified sense at this point) then
we might expect

i−1∑
j=ki

Ě∗
((

Pθj
− Pθki

)
P

i−j−1
θki

f (Xj )
)

to vanish if the number of terms in this sum does not
grow too rapidly. However as noticed when analysing the
first term of the fundamental decomposition above, simple
continuity cannot be expected to be sufficient in general
since θki

, θki+1, . . . , θi−1 are random and time dependent.
By analogy with the analysis above one could assume some

form of uniform continuity in order to eliminate the vari-
ability of θj and θki

in the expression above. More precisely,
denoting for any δ > 0

�(δ) := sup
|g|≤1

sup
x∈X,{θ,θ ′∈�:|θ−θ ′|≤δ}

|Pθg(x) − Pθ ′g(x)|,

one could assume,

lim
δ→0

�(δ) = 0.

Provided that the sequence {θi} is such that its increments
are bounded i.e. such that |θi − θi−1| ≤ γi for a determin-
istic sequence {γi} ∈ [0,∞)N (which is possible since the
updates of {θi} are chosen by the user) then the second term
of (6) can be bounded by

i−1∑
j=ki

j∑
k=ki+1

�γk
,

which can usually be easily dealt with; e.g. when some uni-
form Lipschitz continuity is assumed and �(δ) = Cδ for
some constant C > 0 (Andrieu and Moulines 2006). Unfor-
tunately, although mathematically convenient, this condition
is not satisfied in numerous situations of interest, due in par-
ticular to the required uniformity in θ, θ ′ ∈ �. Other appar-
ently weaker conditions have been suggested, but share the
same practical underlying difficulties such as

lim
i→∞ sup

|g|≤1
Ě∗
[|Pθi

g(Xi) − Pθi−1g(Xi)|
]= 0

suggested in Benveniste et al. (1990, p. 236) and the slightly
stronger condition of the type

lim
i→∞ sup

x∈X,|g|≤1
Ě∗
[|Pθi

g(x) − Pθi−1g(x)|]= 0,

in Roberts and Rosenthal (2006).

3.2 Discussion

The simple discussion above is interesting in two respects.
On the one hand, using basic arguments, it points to the pri-
mary conditions under which one might expect controlled
MCMC algorithms to be π -ergodic: “expected ergodicity
and continuity of the transition probabilities”. On the other
hand it also points to the difficulty of proposing verifiable
conditions to ensure that the aforementioned primary condi-
tions are satisfied. The problem stems from the fact that it is
required to prove that the algorithm is not unlucky enough
to tune θ to poor values, leading to possibly unstable algo-
rithms. The uniform conditions suggested earlier circumvent
this problem, since they suggest that there are no such arbi-
trarily “bad” values. This is unfortunately not the case for
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numerous algorithms of practical interest. However it is of-
ten the case that such uniformity holds for subsets K ⊂ �.
For example in the case of the first toy example of Sect. 2 the
sets defined as Kε := [ε,1 − ε] for any ε ∈ (0,1) are such
that for any ε ∈ (0,1) the Markov chains with parameters
θ ∈ Kε are geometrically convergent with a rate of at least
|1 − 2ε|, independent of θ ∈ Kε . A simple practical solution
thus consists of identifying such subsets K and constrain
{θi} to these sets by design. This naturally requires some un-
derstanding of the problem at hand, which might be difficult
in practice, and does not reflect the fact that stability is ob-
served in practice without the need to resort to such “fixed”
truncation strategies. A general approach for adaptive trun-
cation is developed and analysed in Andrieu et al. (2005)
and Andrieu and Moulines (2006). It takes advantage of the
fact that uniform ergodicity and continuity can be shown for
families of subsets of {Ki ⊂ �}, such that {Ki ⊂ �} is a
covering of � such that Ki ⊂ Ki+1 for i ≥ 0. The strategy
then consists of adapting the truncation of the algorithm on
the fly in order to ensure that {θi} does not wander too fast
towards inappropriate values in � or at its boundary, hence
ensuring that ergodicity can kick in and stabilise the trajec-
tories of {θi}, i.e. ensure that there is a random, but finite,
k such that {θi} ⊂ Kk with probability 1. The procedure
has the advantage of not requiring much knowledge about
what constitutes good or bad values for θ , while allowing
for the incorporation of prior information and ultimately en-
suring stability. It can in fact be shown, under conditions
satisfied by some classes of algorithms, that the number k of
reprojections needed for stabilisation is a random variable
with probability distribution whose tails decay superexpo-
nentially. While this approach is general and comes with a
general and applicable theory, it might be computationally
wasteful in some situations and more crucially does not re-
flect the fact that numerous algorithm naturally present sta-
bility properties. Another possibility consists of considering
mixtures of adaptive and non-adaptive MCMC proposal dis-
tributions, the non adaptive components ensuring stability
e.g. (Roberts and Rosenthal 2007): again while this type of
strategy generally ensures that the theory works, it poses the
problem of the practical choice of the non-adaptive compo-
nent, and might not always result in efficient strategies. In
addition, as for the strategies discussed earlier, this type of
approach fails to explain the observed behaviour of some
adaptive algorithms.

In a number of situations of interest it is possible to show
that the parameter θ stays away from its forbidden values
with probability one (Andrieu and Tadić 2007). The ap-
proach establishes a form of recurrence via the existence of
composite drift functions for the joint chain {θi,Xi}, which
in turn ensures an infinite number of visits of {θi} to some
sets K for which the uniform properties above hold. This
can be shown to result in stability under fairly general con-
ditions. In addition the approach provides one with some

insight into what makes an algorithm stable or not, and sug-
gests numerous ways of designing updates for {θi} which
will ensure stability and sometimes even accelerate conver-
gence. Some examples are discussed in Sect. 4.2.2. In Saks-
man and Vihola (2008) the authors address the same prob-
lem by proving that provided that {θi} is constrained not to
drift too fast to bad values, then π -ergodicity of {Xi} is pre-
served. The underlying ideas are related to a general strategy
of stabilisation developed for the stochastic approximation
procedure, see Andradóttir (1995).

Finally we end this section with a practical implication
of the developments above, related to the rate of conver-
gence of controlled MCMC algorithms. Assume for exam-
ple the existence of K ⊂ �, C ∈ (0,∞), ρ ∈ (0,1) and
{γi} ∈ [0,∞)N such that for all i ≥ 1, θ, x ∈ K × X and any
f : X → [−1,1]
|P i

θ f (x) − Eπ (f )| ≤ Cρi, (8)

and for any θ, θ ′ ∈ K, x ∈ X and any f : X → [−1,1],
|Pθf (x) − Pθ ′f (x)| ≤ C|θ − θ ′|, (9)

and such that for all i ≥ 1, |θi − θi−1| ≤ γi , where {γi}
satisfies a realistic assumption of slow decay (Andrieu and
Moulines 2006) (satisfied for example for γi = 1/iα,α > 0).
These conditions are far from restrictive and can be shown
to hold for the symmetric random walk Metropolis (SRWM)
for some distributions π , the independent Metropolis-
Hastings (IMH) algorithm, mixtures of such transitions etc.
(Andrieu and Moulines 2006). Less restrictive conditions
are possible, but lead to slower rates of convergence. Then,
using a more precise form of the decomposition in (6) (An-
drieu and Moulines 2006, Proposition 4), one can show that
there exists a constant C′ ∈ (0,∞) such that for all i ≥ 1
and |f | ≤ 1,
∣∣∣Ě∗

[
(f (Xi) − Eπ (f )) I{σ ≥ i}]

∣∣∣≤ C′γi, (10)

where σ is the first time at which {θi} leaves K (which can
be infinity). The result simply tells us that while the adapted
parameter does not leave K, convergence towards π occurs
at a rate of at least {γi}, and as pointed out in Andrieu and
Moulines (2006) does not require convergence of {θi}. This
might appear to be a negative result. However it can be
proved, (Andrieu 2004) and (Andrieu and Moulines 2006),
that there exist constants A(γ, K) and B(γ, K) such that for
any N ≥ 1,
√√√√

Ě∗

[∣∣∣∣∣
1

N

N∑
i=1

f (Xi) − Eπ (f )

∣∣∣∣∣
2

I{σ ≥ n}
]

≤ A(γ, K)√
N

+ B(γ, K)

∑N
k=1 γk

N
. (11)
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The first term corresponds to the Monte Carlo fluctuations
while the second term is the price to pay for adaptation. As-
suming that γi = i−α for α ∈ (0,1), then

∑N
k=1 γk

N
∼ 1

1 − α
N−α,

which suggests no loss in terms of rate of convergence for
α ≥ 1/2. More general and precise results can be found in
Andrieu and Moulines (2006, Proposition 6), including a
central limit theorem (Theorem 9) which shows the asymp-
totic optimality of adaptive MCMC algorithms when con-
vergence of {θi} is ensured . Weaker rates of convergence
than (8) lead to a significant loss of rate of convergence,
which is also observed in practice.

4 Vanishing adaptation: a framework for consistent
adaptive MCMC algorithms

In the previous section we have given arguments that sug-
gest that vanishing adaptation for MCMC algorithms might
lead to algorithms from which expectations with respect to
a distribution of interest π can be consistently estimated.
However neither criteria nor ways of updating the parameter
θ were described. The main aim of this section is to point
out the central role played by stochastic approximation and
the Robbins-Monro recursion (Robbins and Monro 1951) in
the context of vanishing or non-vanishing adaptation. While
a complete treatment of the theoretical aspects of such con-
trolled MCMC algorithms is far beyond the scope of this
review, our main goal is to describe the principles underpin-
ning this approach that have a practical impact and to show
the intricate link between criteria and algorithms. Indeed, as
we shall see, while the stochastic approximation framework
can be used in order to optimise a given criterion, it can also
help understand the expected behaviour of an updating al-
gorithm proposed without resorting to grand theory, but by
simply resorting to common sense.

4.1 Criteria to optimise MCMC algorithms and a general
form

Since our main aim is that of optimising MCMC transi-
tion probabilities, the first step towards the implementation
of such a procedure naturally consists of defining what is
meant by optimality, or suboptimality. This can be achieved
through the definition of a cost function, which could for ex-
ample express some measure of the statistical performance
of the Markov chain in its stationary regime e.g. favour neg-
ative correlation between Xi and Xi+l for some lag l and
i = 0,1, . . . . In what follows we will use the convention that
an optimum value θ∗ corresponds to a root of the equation

h(θ) = 0 for some function h(θ) closely related to the afore-
mentioned cost function.

Since the main use of MCMC algorithms is to compute
averages of the form Î θ

N (f ) given in (1) in order to estimate
Eπ (f (X)), in situations where a central limit theorem holds,
i.e. in scenarios such that for any θ ∈ �

√
N (Î θ

N (f ) − Eπ (f (X))) →D N (0, σ 2
θ (f )),

it might seem natural to attempt to optimise the constant
σ 2

θ (f ). This however poses several problems. The first prob-
lem is computational. Indeed, for a given θ ∈ � and f :
X :→ [−1,1] (for simplicity) and when it exists, σ 2

θ (f ) can
be shown to have the following expression

σ 2
θ (f ) = Eπ (f̄ 2(X0)) + 2

+∞∑
k=1

E
θ (f̄ (X0)f̄ (Xk))

= Eπ (f̄ 2(X0)) + 2E
θ

(+∞∑
k=1

f̄ (X0)f̄ (Xk)

)
, (12)

with f̄ (x) := f (x) − Eπ (f (X)) and E
θ the expectation

associated to the Markov chain with transition probability
Pθ and such that X0 ∼ π . This quantity is difficult to esti-
mate and optimise (since for all θ ∈ � it is the expectation
of a non-trivial function with respect to an infinite set of
random variables) although some solutions exist (Vladislav
Tadić, personal communication, see also Richard Everitt’s
Ph.D. thesis) and truncation of the infinite sum is also possi-
ble (Andrieu and Robert 2001; Pasarica and Gelman 2003),
allowing for example for the recursive estimation of the
gradient of σ 2

θ (f ) with respect to θ . In Pasarica and Gel-
man (2003), maximising the expected mean square jump
distance is suggested, i.e. here in the scalar case and with
X̄i = Xi − Eπ (X) for i = 0,1,

E
θ
(
(X0 − X1)

2
)

= E
θ
((

X̄0 − X̄1
)2)

= 2
(
Eπ

(
X̄2
)

− E
θ
(
X̄0X̄1

))
(13)

which amounts to minimising the term corresponding to
k = 1 in (12) for the function f (x) = x for all x ∈ X. An-
other difficulty is that the criterion depends on a specific
function f , and optimality for a function f might not re-
sult in optimality for another function g. Finally it can be
argued that although optimising this quantity is an asymp-
totically desirable criterion, at least for a given function, this
criterion can in some scenarios lead to MCMC samplers that
are slow to reach equilibrium (Besag and Green 1993).

Despite the difficulties pointed out earlier, the criterion
above should not be totally discarded, but instead of try-
ing to optimise it directly and perfectly, suboptimal op-
timisation through proxies that are amenable to simple
computation and efficient estimation might be preferable.
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Such a simple criterion, which is at least completely sup-
ported by theory in some scenarios (Roberts et al. 1997;
Sherlock and Roberts 2006; Roberts and Rosenthal 1998;
Bédard 2006) and proves to be more universal in practice,
is the expected acceptance probability of the MH algorithm
for random walk Metropolis algorithms or Langevin based
MH updates. The expected acceptance probability is more
formally defined as the jump rate of a MH update in the sta-
tionary regime

ᾱθ :=
∫

X2
min

{
1,

π (y) qθ (y, x)

π (x) qθ (x, y)

}
π (x)qθ (x, y) dxdy

= Eπ⊗qθ

(
min

{
1,

π (Y ) qθ (Y,X)

π (X)qθ (X,Y )

})
. (14)

This criterion has several advantages. The first one is com-
putational, since it is much simpler an expectation of a much
simpler function than σ 2

θ (f ). In such cases it has the double
advantage of being independent of any function f and to
provide a good compromise for σ 2

θ (f ) for all functions f .
A less obvious advantage of this criterion, which we illus-
trate later on in Sect. 5, is that where some form of smooth-
ness of the target density is present it can be beneficial in
the initial stages of the algorithm in order to ensure that the
adaptive algorithm actually starts exploring the target distri-
bution in order to “learn” some of its features.

The aforementioned theoretical results tell us that opti-
mality of σ 2

θ (f ) (in terms of θ ) or proxy quantities related
to this quantity (truncation, asymptotics in the dimension)
is reached for a specific value of the expected acceptance
probability ᾱθ , denoted α∗ hereafter: 0.234 for the random
walk Metropolis algorithm for some specific target distribu-
tions and likewise 0.574 for Langevin diffusion based MH
updates (Roberts and Rosenthal 1998).

In some situations, Gelman et al. (1995) have shown that
the “optimal” covariance matrix for a multivariate random
walk Metropolis algorithm with proposal N (0,�) is � :=
(2.382/nx)�π , where �π is the covariance matrix of the
target distribution π

�π = Eπ

(
XXT)− Eπ (X)E

T
π (X) .

The covariance is unknown in general situations and re-
quires the numerical computation of the pair

(
Eπ (X) ,Eπ

(
XXT))= Eπ

(
(X, XXT)

)
. (15)

As pointed out in Andrieu and Moulines (2006, Sect. 7), this
can also be interpreted as minimising the Kullback-Leibler
divergence

∫
X
π(x) log

π(x)

N (x;μ,�)
dx = Eπ

(
log

π(X)

N (X;μ,�)

)
,

which suggests generalisations consisting of minimising

Eπ

(
log

π(X)

qθ (X)

)
, (16)

in general, for some parametric family of probability dis-
tributions {qθ , θ ∈ �}. Section 7 of Andrieu and Moulines
(2006) is dedicated to the development or an on-line EM
algorithm and a theoretical analysis of an adaptive indepen-
dent MH algorithm where qθ is a general mixture of distri-
butions belonging to the exponential family. We will come
back to this strategy in Sect. 5.2.2 where we show that this
procedure can also be used in order to cluster the state-space
X and hence define locally adaptive algorithms.

Before turning to ways of optimising criteria of the type
described above, we first detail a fundamental fact shared by
all the criteria described above and others, which will allow
us to describe a general procedure for the control of MCMC
algorithms. The shared characteristic is naturally that all the
criteria developed here take the form of an expectation with
respect to some probability distribution dependent on θ ∈ �.
In fact as we shall see optimality can often be formulated as
the problem of finding the root(s) of an equation of the type

h(θ) := E
θ (H(θ,X0, Y1,X1, . . .)) = 0 (17)

(remember that {Yi} is the sequence of proposed samples)
for some function � × XN :→ R

nh for some nh ∈ N, with in
many situations nh = nθ (but not always). The case of the
coerced acceptance probability corresponds to

H(θ,X0, Y1,X1, . . .) = min

{
1,

π (Y1) qθ (Y1,X0)

π (X0) qθ (X0, Y1)

}
− α∗,

which according to (14) results in the problem of finding the
zero(s) of h(θ) = ᾱθ − α∗. The moment matching situation
corresponds to

H(θ,X) = (X,XXT) − (μ,�)

for which it is sought to find the zeros of h(θ) = (μπ ,�π)−
(μ,�) i.e. simply (μπ ,�π) (naturally assuming that the
two quantities exist). It might not be clear at this point how
optimising the remaining criteria above might amount to
finding the zeros of a function of the form (17). However,
under smoothness assumptions, it is possible to consider the
gradients of those criteria (note however that one might con-
sider other methods than gradient based approaches in order
to perform optimisation). In the case of the Kullback-Leibler
divergence, and assuming that differentiation and integration
can be swapped, the criterion can be expressed as

Eπ

(
∇θ log

π(X)

qθ (X)

)
= 0 (18)
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that is

H(θ,X) = ∇θ log
π(X)

qθ (X)

and in the more subtle case of the first order autocovariance
minimisation one can invoke a standard score function argu-
ment and find the zeros of (in the scalar case for simplicity)

∇θE
θ
(
X̄0X̄1

)= Eθ

(∇θPθ (X0,X1)

Pθ (X0,X1)
X0X1

)
= 0.

Similarly, under smoothness assumptions, one can differen-
tiate σ 2

θ (f ) and obtain a theoretical expression for ∇θσ
2
θ (f )

of the form (17). Note that when qθ is a mixture of distrib-
ution belonging to the exponential family, then it is possible
to find the zeros (assumed here to exist) of (18) using an
on-line EM algorithm (Andrieu and Moulines 2006).

Note that all the criteria described above are “steady
state” criteria and explicitly involve π , but that other cri-
teria such as the minimisation of return times to a given set
C ⊂ X (Andrieu and Doucet 2003), namely

τ = Ě
θ
λ

[ ∞∑
i=1

I{Xi /∈ C}
]

with λ a probability measure concentrated on C, do not en-
ter this category. Such criteria seem however difficult to op-
timise in practice and we do not pursue this.

4.2 The stochastic approximation framework

We dedicate here a section to the Robbins-Monro update,
which although not the only possibility to optimise criteria
of the type (17) appears naturally in most known adaptive
algorithms and provides us with a nice framework naturally
connected to the literature on controlled Markov chains in
the engineering literature. The reason for its ubiquity stems
from the trivial identity: θi+1 = θi + θi+1 − θi . This turns
out to be a particularly fruitful point of view in the present
context. More precisely, it is well suited to sequential up-
dating of {θi} and makes explicit the central role played by
the updating rule defining the increments {θi+1 − θi}. In
light of our earlier discussion {θi+1 − θi} should be van-
ishing, and when convergence is of interest their cumula-
tive sums should also vanish (in some probabilistic sense) in
the vicinity of optimal values θ∗. Naturally, although con-
venient, this general framework should not prevent us from
thinking “outside of the box”.

4.2.1 Motivating example

Consider the case where X = R and a symmetric ran-
dom walk Metropolis (SRWM) algorithm with normal in-
crement distribution N (z;0, exp(θ)), resulting in a tran-

sition probability P NSRW
θ . We know that in some situa-

tions (Roberts et al. 1997) the expected acceptance prob-
ability should be in a range close to ᾱ∗ = 0.44. We will
assume for simplicity that ᾱθ in (14) is a non-increasing
function of θ (which is often observed to be true, but
difficult to check rigourously in practice and can further-
more be shown not to hold in some situations, Hastie
2005). In such situations one can suggest the following
intuitive algorithm. For an estimate θi ∈ � obtained af-
ter i × L iterations of the controlled MCMC algorithm,
one can simulate L iterations of the transition probability
P NSRW

θi
and estimate the expected acceptance probability

for such a value of the parameter for the i-th block of sam-
ples {XiL+1, YiL+1, . . . ,XiL+L,YiL+L, k = 1, . . . ,L} (ini-
tialised with Xi )

α̂θi
= 1

L

∑L

k=1
min

{
1,

π(YiL+k)

π(XiL+k−1)

}

and update θi according to the following rule, motivated by
our monotonicity assumption on ᾱθ : if α̂θi

> ᾱ∗ then θi is
probably (α̂θi

is only an estimator) too small and should be
increased while if α̂θi

< ᾱ∗ then θi should be decreased.
There is some flexibility concerning the amount by which
θi should be altered and depends either on the criterion one
wishes to optimise or more heuristic considerations. How-
ever, as detailed later, this choice will have a direct influ-
ence on the criterion effectively optimised and in light of
the discussion of Sect. 3 concerning diminishing adaptation,
this amount of change should diminish as i → ∞ in order
to either ensure that π -ergodicity of {Xi} is ensured or that
“approximate convergence” of {θi} is ensured. The intuitive
description given above can suggest the following updating
rules (see also Gilks et al. 1998, Andrieu and Robert 2001,
Atchadé and Rosenthal 2005 for similar rules)

θi+1 = θi + γi+1
(
I
{
α̂θi

− ᾱ∗ > 0
}− I

{
α̂θi

− ᾱ∗ ≤ 0
})

(19)

or

θi+1 = θi + γi+1
(
α̂θi

− ᾱ∗) , (20)

where {γi} ⊂ (0,+∞)N is a sequence of possibly stochas-
tic stepsizes which ensures that the variations of {θi} van-
ish. The standard approach consists of choosing the se-
quence {γi} deterministic and non-increasing, but it is also
possible to choose {γi} random e.g. such that it takes val-
ues in {δ,0} for some δ > 0 and such that P(γi = δ) = pi

where {pi} ⊂ [0,1]N is a deterministic and non-increasing
sequence (Roberts and Rosenthal 2007), although it is not
always clear what the advantage of introducing such an ad-
ditional level of randomness is. A more interesting choice in
practice consists of choosing {γi} adaptively, see Sect. 4.2.2,
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but for simplicity of exposition we focus here on the deter-
ministic case.

We will come back to the first updating rule later on, and
now discuss the second rule which as we shall see aims to
set (14) equal to ᾱ∗. Notice first that if L → ∞ and the un-
derlying Markov chain is ergodic, then α̂θ → ᾱθ and the re-
cursion becomes deterministic

θi+1 = θi + γi+1
(
ᾱθi

− ᾱ∗) (21)

and is akin to a standard gradient algorithm, which will con-
verge under standard conditions. Motivated by this asymp-
totic result, one can rewrite the finite L recursion (20) as
follows

θi+1 = θi + γi+1
(
ᾱθi

− ᾱ∗)+ γi+1
(
α̂θi

− ᾱθi

)
. (22)

Assuming for simplicity that there exists θ∗ ∈ ◦
�, the in-

terior of �, such that ᾱθ∗ = ᾱ∗ and that α̂θi
is unbiased,

at least as i → ∞. Then, since |θi+1 − θi | ≤ γi+1 → 0 as
i → ∞, and provided that α̂θ − ᾱθ is smooth in terms of
θ ∈ � the sequence of noise terms {α̂θi

− ᾱθi
} is expected

to average out to zero (i.e. statistically, positive increments
are compensated by negative increments) and we expect the
trajectory of (22) to oscillate about the trajectory of (21),
with the oscillations vanishing as i → ∞. This is the main
idea at the core of the systematic analysis of such recursions
which, as illustrated below, has an interest even for practi-
tioners. Indeed, by identifying the underlying deterministic
recursion which is approximated in practice, it allows one to
understand and predict the behaviour of algorithms, even in
situations where the recursion is heuristically designed and
the underlying criterion not explicit. Equation (20) suggests
that stationary points of the recursion should be such that
ᾱθ∗ = ᾱ∗. The stationary points of the alternative recursion
(19) are given in the next subsection.

In general most of the recursions of interest can be recast
as follows,

θi+1 = θi + γi+1Hi+1 (θi,X0, . . . , Yi,Xi, Yi+1,Xi+1) (23)

where Hi+1(θ,X0, . . . , Yi,Xi, Yi+1,Xi+1) takes its values
in �. Typically in practice {Hi+1} is a time invariant se-
quence of mappings which in effect only depends on a fixed
and finite number of arguments through time invariant sub-
sets of {Yi,Xi} (e.g. the last L of them at iteration i, as
above). For simplicity we will denote this mapping H and
include all the variables θi,X0, . . . , Yi,Xi, Yi+1,Xi+1 as an
argument, although the dependence will effectively be on
a subgroup. Considering sequences {Hi(θ,X0, . . . , Yi,Xi,

Yi+1,Xi+1)} with a varying numbers of arguments is possi-
ble (and needed when trying to optimise (12) directly), but
at the expense of additional notation and assumptions.

4.2.2 Why bother with stochastic approximation?

In this subsection we point to numerous reasons why the
standard framework of stochastic approximation can be use-
ful in order to think about controlled MCMC algorithms:
as we shall see motivations range from theoretical to practi-
cal or implementational, and might help shed some lights on
possibly heuristically developed strategies. Again, although
this framework is very useful and allows for a systematic ap-
proach to the development and understanding of controlled
MCMC algorithms, and despite the fact that this framework
encompasses most known procedures, it should however not
prevent us from thinking differently.

A standardized framework for programming and analysis
Apart from the fact that the standard form (23) allows for
systematic ways of coding the recursions, in particular the
creation of “objects”, the approach allows for an understand-
ing of the expected behaviour of the recursion using sim-
ple mathematical arguments as well as the development of a
wealth of very useful variations, made possible by the under-
standing of the fundamental underlying nature of the recur-
sions. As suggested above with a simple example (21)–(22)
the recursion (23) can always be rewritten as

θi+1 = θi + γi+1h(θi) + γi+1ξi+1, (24)

where h(θ) is the expectation in steady state for a fixed θ ∈
� of H(θ,X0, . . . , Yi,Xi, Yi+1,Xi+1), i.e.

h(θ) := E
θ (H (θ,X0, . . . , Yi,Xi, Yi+1,Xi+1))

and ξi+1 := H(θi,X0, . . . , Yi,Xi, Yi+1,Xi+1) − h(θi) is
usually referred to as the “noise”. The recursion (24) can
therefore be thought of as being a noisy gradient algorithm.
Intuitively, if we rearrange the terms in (24)

θi+1 − θi

γi+1
= h(θi) + ξi+1,

we understand that provided that the noise increments ξi

“cancel out on average”, then a properly rescaled continu-
ous interpolation of the recursion θ0, θ1, . . . should behave
more or less like the solutions θ(t) of the ordinary differen-
tial equation

θ̇ (t) = h(θ (t)) , (25)

whose stationary points are precisely such that h(θ) = 0.
The general theory of stochastic approximation consists of
establishing that the stationary points of (24) are related
to the stationary points of (25) and that convergence oc-
curs provided that some conditions concerning {γi}, h(θ)

and {ξi} are satisfied. While this general theory is rather in-
volved, it nevertheless provides us with a useful recipe to
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try to predict and understand some heuristically developed
algorithms. For example it is not clear what criterion is actu-
ally optimised when using the updating rule (19). However
the “mean field” approach described above can be used to
compute

h(θ) = E
θ (H (θ,X0, . . . , Yi,Xi, Yi+1,Xi+1))

= E
θ
(
I
{
α̂θ − ᾱ∗ > 0

}− I
{
α̂θ − ᾱ∗ ≤ 0

})
= P

θ
(
α̂θ − ᾱ∗ > 0

)− P
θ
(
α̂θ − ᾱ∗ ≤ 0

)
.

Its zeros (the possible stationary points of the recursion) are
such that P

θ (α̂θ − ᾱ∗ > 0) = P
θ (α̂θ − ᾱ∗ ≤ 0) = 1/2, i.e.

the stationary points θ∗ are such that ᾱ∗ is the median of the
distribution of α̂θ in steady-state, which seems reasonable
when this median is not too different from ᾱθ∗ given our ini-
tial objective. In addition this straightforward analysis also
tells us that the algorithm will have the desired gradient like
behaviour when P

θ (α̂θ − ᾱ∗ > 0) is a non-increasing func-
tion of θ . Other examples of the usefulness of the framework
to design and understand such recursions are given later in
Sect. 5, in particular Sect. 5.2.2.

In addition to allowing for an easy characterisation of
possible stationary points of the recursion (and hence of the
“ideal” optimal values θ∗) the decomposition (24) points to
the role played by the deterministic quantity h(θ) to ensure
that the sequence {θi} actually drifts towards optimal values
θ∗, which is the least one can ask from such a recursion,
and the fact that the noise sequence {ξi} should also aver-
age out to zero for convergence purposes. This latter point
is in general very much related to the ergodicity properties
of {Xi}, which justifies the study of ergodicity even in situ-
ations where it is only planned to use the optimised MCMC
algorithm with a fixed and suboptimal parameter θ̃ obtained
after optimisation. This in turn points to the intrinsic dif-
ficulty of ensuring and proving such ergodicity properties
before {θi} wanders towards “bad” values, as explained in
Sect. 2. Recent progress in Andrieu and Tadić (2007), rely-
ing on precise estimates of the dependence in θ of standard
drift functions for the analysis of Markov chains allows one
to establish that {θi} stays away from such “bad” values, en-
suring in turn ergodicity and a drift of {θi} towards the set of
values of interest θ∗. Similar results are obtained in Saksman
and Vihola (2008), albeit using totally different techniques.

Finally note that the developments above stay valid in the
situation where {γi} is set to a constant, say γ . In such sit-
uations it is possible to study the distribution of θi around
a deterministic trajectory underlying the ordinary differen-
tial equation, but it should be pointed out that in such sit-
uations {Xi} is not π -stationary, and one can at most hope
for πγ -stationarity for a probability distribution πγ such that
πγ → π in a certain sense as γ → 0.

The connection between stochastic approximation and
the work of Haario et al. (2001) and the underlying gener-
ality was realised in Andrieu and Robert (2001), although

it is mentioned in particular cases in Geyer and Thomp-
son (1995) and Ramponi (1998), the latter reference being
probably the first rigourous analysis of the stability and con-
vergence properties of a particular implementation of con-
trolled MCMC for tempering type algorithms.

A principled stopping rule As pointed out earlier, and al-
though ergodicity is intrinsically related to the sequence {θi}
approaching the zeroes of h(θ) and hence taking “good val-
ues”, one might be more confident in using samples pro-
duced by a standard MCMC algorithm that would use an
optimal or suboptimal value of θ . This naturally raises the
question of the stopping rule to be used. In the ubiquitous
case of the Robbins-Monro updating rule, and given the
clear interpretation in terms of the root finding of h(θ), one
can suggest monitoring the average of the field

1

n

n∑
i=1

H(θi,Xi+1)

and stop, for example, when its magnitude is less than a pre-
set threshold ε for a number m of consecutive iterations.
More principled statistical rules relying on the CLT can also
be suggested, but we do not expand on this here.

Boundedness and convergence The dependence of the er-
godicity properties of Pθ can lead to some difficulties in
practice. Indeed these ergodicity properties are rarely uni-
form in θ ∈ � and tend to degrade substantially for some
values, typically on the boundary ∂� of �. For example
for the toy example of Sect. 2, both values ∂� = {0,1}
are problematic. For θ = 0 aperiodicity is lost whereas
for θ = 1 irreducibility is lost. This can result in impor-
tant problems in practice since π -ergodicity can be lost as
pointed out in Sect. 2 through the aforementioned toy ex-
ample when the sequence {θi} converges to ∂� too quickly.
In fact, as pointed out to us by Y.F. Atchadé, an example
in Winkler (2003) shows that even in the situation where
θi(1) = θi(2) = 1 − 1/i, the sequence {n−1∑n

i=1Xi − 3/2}
does not vanish (in the mean square sense) as i → ∞. This
problem of possible loss of ergodicity of Pθ and its implica-
tions for controlled Markov chains has long been identified,
but is often ignored in the current MCMC related literature.
For example a normal symmetric random walk Metropolis
(N-SRWM) algorithm loses ergodicity as its variance (or co-
variance matrix) becomes either too large or too small and
an algorithm with poor ergodicity properties does not learn
features of the target distribution π . In the case of a random
scan MH within Gibbs algorithm as given in (2), it is pos-
sible to progressively lose irreducibility whenever a weight
drifts towards 0. Several cures are possible. The first and ob-
vious one consists of truncating � in order to ensure the ex-
istence of some uniform ergodicity properties of the family
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of transitions {Pθ }. While this presumes that one knows by
how much one can truncate � without affecting the ergod-
icity properties of {Pθ } significantly, this is not a completely
satisfactory solution since stability is actually observed in
numerous situations.

In Andrieu and Tadić (2007), using explicit dependence
of the parameters of well known drift conditions for MCMC
algorithms on the tuning parameter θ , general conditions
on the transition probability Pθ and the updating function
H(θ, x) that ensure boundedness of {θi} are derived. As a
result π -ergodicity of {Xi}. and convergence to optimal or
suboptimal values of θ are automatically satisfied without
the need ro resort to fixed or adaptive truncations for ex-
ample One aspect of interest of the results is that they sug-
gest some ways of designing fully adaptive and stable algo-
rithms.

For example by noting that the zeroes of h(θ) are also the
zeroes of h(θ)/(1 + |θ |α) for example, one can modify the
standard recursion in order to stabilise the update, resulting
in the alternative updating rule

θi+1 = θi + γi+1H(θi,Xi+1)/(1 + |θi |α).

One can also add regularisation terms to the recursion.
For example, assuming for example that we learn optimal
weights for a mixture of transition probabilities as in (2), the
recursion

wk
i+1 = wk

i + γi+1Hk(wi,Xi+1)

(with wi = (w1
i ,w

2
i , . . . ,w

n
i )) can be for example modified

to

wk
i+1 = wk

i + γi+1Hk(wi,Xi+1)

+ γ 1+λ
i+1

(
α + (wk

i )
−β

∑n
j=1 α + (w

j
i )−β

− wk
i

)

for some α,β,λ > 0. Note that since the sum over k of the
fields is 0, the weights still sum to 1 after the update and
also that due to the boundedness of the additional term it
vanishes as i → ∞. Finally in Andrieu et al. (2005) and An-
drieu and Moulines (2006), following Chen et al. (1988), an
algorithm with adaptive truncation boundaries is suggested
and a general theory developed that ensures that both bound-
edness and convergence of {θi} is ensured. Although requir-
ing an intricate theory, the conditions under which bounded-
ness and convergence hold cover a vast number of situations,
beyond the situations treated in Andrieu and Tadić (2007).
In Saksman and Vihola (2008) a different approach to prove
stability is used, and consists of proving that provided that
{θi} does not drift too fast to bad values, then the algorithm
preserves ergodicity. In fact the analysis performed by the
authors can be directly used to study the general stabilisation

strategy of Andradóttir (1995) (see also reference therein)
for stochastic approximation.

Finally, under more restrictive conditions, detailed in
Benveniste et al. (1990) and Andrieu and Atchadé (2007,
Theorem 3.1), which include the uniqueness of θ∗ such that
h(θ∗) = 0 and conditions (8)–(9) for θ ∈ K ⊂ �, it is pos-
sible to show that for a deterministic sequence {γi}, there
exists a finite constant C such that for all i ≥ 1,

Ě∗
[
|θi − θ∗|2I{σ ≥ i}

]
≤ Cγi,

where σ is the first exit time from K, meaning that while
θi remains in K (where locally uniform conditions of the
type (8)–(9) hold), then the rate of convergence towards θ∗
is given by {γi}.

Automatic choice of the stepsizes The stochastic approx-
imation procedure requires the choice of a stepsize se-
quence {γi}. A standard choice consists of choosing a deter-
ministic sequence satisfying

∑∞
i=1 γi = ∞ and

∑∞
i=1 γ 1+λ

i

< ∞ for some λ > 0. The former condition somehow ensure
that any point of � can eventually be reached, while the sec-
ond condition ensures that the noise is contained and does
not prevent convergence. Such conditions are satisfied by
sequences of the type γi = C/iα for α ∈ ((1 + λ)−1,1]. We
tend in practice to favour values closer to the lower bound
in order to increase convergence of the algorithm towards a
neighbourhood of θ∗. This is at the expense of an increased
variance of {θi} around θ∗ however.

A very attractive approach which can be useful in prac-
tice, and for which some theory is available, consists of
adapting {γi} in light of the current realisation of the
algorithm—this proves very useful in some situations see
Andrieu and Jasra (2008). The technique was first described
in Kesten (1958) and relies on the remark that, for exam-
ple, an alternating sign for {α̂θi

− ᾱ∗} in (22) is an indica-
tion that {θi} is oscillating around (a) solution(s), whereas
a constant sign suggests that {θi} is, roughly speaking,
still far from the solution(s). In the former case the step-
size should be decreased, whereas in the later it should, at
least, be kept constant. More precisely consider a function
γ : [0,+∞) → [0,+∞). The standard scenario correspond-
ing to a predetermined deterministic schedule consists of
taking {γi = γ (i)}. The strategy suggested by Kesten (1958)
and further generalised to the multivariate case in Delyon
and Juditsky (1993) suggests to consider for i ≥ 2 the fol-
lowing sequence of stepsizes

γi = γ

(
i−1∑
k=1

I {〈H(θk−1,Xk),H(θk,Xk+1)〉 ≤ 0}
)

where 〈u,v〉 is the inner product between vector u and v.
Numerous generalisations are possible in order to take into
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account the magnitudes of {H(θi,Xi+1)} in the choice of
{γi} (Plakhov and Cruz 2004) (and references therein),

γi = γ

(
i−1∑
k=1

φ (〈H(θk−1,Xk),H(θk,Xk+1)〉)
)

for some function φ : R → [0,+∞). Numerous generalisa-
tions of these ideas are naturally possible and we have found
that in numerous situations a componentwise choice of step-
size can lead to major acceleration (Andrieu and Jasra 2008),
i.e. consider for example for j = 1, . . . , nθ

γ
j
i = γ

(
i−1∑
k=1

I
{〈

Hj(θk−1,Xk),Hj (θk,Xk+1)
〉≤ 0

})

where Hj(θ,X) is the j -th component of H(θ,X), but care
must be taken to ensure that important properties of θ (such
as positivity if it is a covariance matrix) are preserved. Fi-
nally note that this idea needs to be handled with care in the
unlikely situations where (here in the scalar case for sim-
plicity) h(θ) ≥ 0 as well as H(θ, x) for all θ, x ∈ �× X and
the solution to our problem is on the boundary of �.

4.2.3 Some variations

The class of algorithms considered earlier essentially rely
on an underlying time homogeneous Markov chain Monte
Carlo algorithm with target distribution π . It is however
possible to consider non-homogeneous versions of the al-
gorithms developed above. More precisely one can suggest
defining a sequence {πi, i ≥ 1} of probability distributions
on X such that πi → π in some sense, e.g. total variation
distance, and select associated MCMC transition probabil-
ities {Pi,θ } such that for any i ≥ 1 and θ ∈ � πiPi,θ = πi .
Then the controlled MCMC algorithm defined earlier can
use Pi+1,θi

at iteration i +1 instead of Pθi
. This opens up the

possibility for example to use tempering ideas, i.e. choose
πi(x) ∝ πβi (x) for βi ∈ (0,1), allowing for the accumula-
tion of useful information concerning the distribution of in-
terest π , while exploring “simpler” distributions. This type
of strategy can be useful in order to explore multimodal dis-
tributions.

Another possibility, particularly suitable to two stage
strategies where adaptation is stopped, consists of remov-
ing the vanishing character of adaptation. In the context of
stochastic approximation this means for example that the se-
quence {γi} can be set to a constant small value γ . As a re-
sult, in light of the examples of the first section, one expects
that under some stability assumptions the chain {Xi} will
produce samples asymptotically distributed according to an
approximation πγ of π (such that πγ → π in some sense)
and optimise an approximate criterion corresponding to the
standard criterion where π is replaced by πγ . This strategy
can offer some robustness properties.

5 Some adaptive MCMC procedures

In this section we present combinations of strategies, some
of them original,1 which build on the principles developed
in previous sections. Note that in order to keep notation sim-
ple and ensure readability we present here the simplest ver-
sions of the algorithms but that additional features described
in Sect. 4.2.2, such as the modification of the mean field to
favour stability, the automatic choice of the stepsize (com-
ponentwise or not) or Rao-Blackwellisation etc., can easily
be incorporated.

5.1 Compound criteria, transient and starting to learn

As pointed out earlier desirable asymptotic criteria and asso-
ciated optimisation procedures can easily be defined. How-
ever it can be observed in practice that the algorithm can
be slow to adapt, in particular in situations where the ini-
tial guess of the parameter θ is particularly bad, resulting
for example in a large rejection probability. More generally
the MH algorithm has this particular rather negative char-
acteristic that if not well tuned it will not explore the target
distribution and hence will be unable to gather information
about it, resulting in a poor learning of the target distribu-
tion, and hence algorithms that adapt and behave badly. We
describe in this section some strategies that circumvent this
problem in practice.

We focus here on the symmetric increments random-
walk MH algorithm (hereafter SRWM), in which q(x, y) =
q(x − y) for some symmetric probability density q on R

nx ,
referred to as the increment distribution. The transition prob-
ability of the Metropolis algorithm is then given for x,A ∈
X × B(X) by

P SRWM
q (x,A)

=
∫

A−x

α(x, x + z)q(z) dz

+ I(x ∈ A)

∫
X−x

(1 − α(x, x + z)) q(z) dz,

x ∈ X,A ∈ B(X), (26)

where α(x, y) := 1 ∧ π(y)/π(x). A classical choice for the
proposal distribution is q(z) = N (z;0,�), where
N (z;μ,�) is the density of a multivariate Gaussian with
mean μ and covariance matrix �. We will later on refer to
this algorithm as the N-SRWM. It is well known that ei-
ther too small or too large a covariance matrix will result
in highly positively correlated Markov chains, and therefore
estimators Î �

n (f ) with a large variance. In Gelman et al.

1First presented at the workshop Adapski’08, 6–8 January 2008,
Bormio, Italy.
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(1995) it is shown that the “optimal” covariance matrix (un-
der restrictive technical conditions not given here) for the N-
SRWM is (2.382/nx)�π , where �π is the true covariance
matrix of the target distribution. In Haario et al. (2001) (see
also Haario et al. 1999) the authors have proposed to “learn
�π on the fly”, whenever this quantity exists. It should be
pointed out here that in situations where this quantity is not
well defined, one should resort to “robust” type estimates in
order to capture the dependence structure of the target distri-
bution; we do not consider this here. Denoting P SRWM

μi,�i
the

transition probability of the N-SRWM with proposal distri-
bution N (0, λ�) for some λ > 0. With λ = 2.382/nx , the
algorithm in Haario et al. (2001) can be summarised as fol-
lows,

Algorithm 2 AM algorithm
• Initialise X0,μ0 and �0.
• At iteration i + 1, given Xi,μi and �i

1. Sample Xi+1 ∼ P SRWM
μi,�i

(Xi, ·).
2. Update

μi+1 = μi + γi+1(Xi+1 − μi),

�i+1 = �i + γi+1((Xi+1 − μi)(Xi+1 − μi)
T − �i).

(27)

This algorithm has been extensively studied in Andrieu
and Moulines (2006), Atchadé and Fort (2008), Bai et al.
(2008) and Andrieu and Tadić (2007). We now detail some
simple improvements on this algorithm.

5.1.1 Rao-Blackwellisation and square root algorithms

Following (Ceperley et al. 1977) and (Frenkel 2006), we
note that, conditional upon the previous state Xi of the chain
and the proposed transition Yi+1, the vector f (Xi+1) (for
any function f : X → R

nf ) can be expressed as

f (Xi+1) := I{Ui+1 ≤ α(Xi,Yi+1)}f (Yi+1)

+ I{Ui+1 > α(Xi,Yi+1)}f (Xi), (28)

where Ui+1 ∼ U (0,1). The expectation of f (Xi+1) with re-
spect to Ui+1 conditional upon Xi and Yi+1 leads to

f (Xi+1) := α(Xi,Yi+1)f (Yi+1)

+ (1 − α(Xi,Yi+1))f (Xi). (29)

For example X̄i+1 :=α(Xi,Yi+1)Yi+1 + (1−α(Xi,Yi+1))Xi

is the “average location” of state Xi+1 which follows Xi

given Yi+1. This can be incorporated in the following “Rao-
Blackwellised” AM recursions

μi+1 = μi + γi+1
[
α(Xi,Yi+1)(Yi+1 − μi)

+ (1 − α(Xi,Yi+1))(Xi − μi)
]
,

�i+1 = �i + γi+1
[
α(Xi,Yi+1) (Yi+1 − μi) (Yi+1 − μi)

T

+ (1 − α(Xi,Yi+1)) (Xi − μi) (Xi − μi)
T − �i

]
.

Using, for simplicity, the short notation (29) a Rao-Black-
wellised AM algorithm can be described as follows:

Algorithm 3 Rao-Blackwellised AM algorithm
• Initialise X0,μ0 and �0.
• At iteration i + 1, given Xi,μi and �i

1. Sample Yi+1 ∼ N (Xi,�i) and set Xi+1 = Yi+1 with
probability α(Xi,Yi+1), otherwise Xi+1 = Xi .

2. Update

μi+1 = μi + γi+1(X̄i+1 − μi),

�i+1 = �i + γi+1[(Xi+1 − μi)(Xi+1 − μi)T − �i].
(30)

Note that it is not clear that this scheme is always advan-
tageous in terms of asymptotic variance of the estimators,
as shown in Delmas and Jourdain (2007), but this modifica-
tion of the algorithm might be beneficial during its transient
whenever the acceptance probability is not too low naturally.

It is worth pointing out that for computational efficiency
and stability one can directly update the Choleski decompo-
sition of �i , using the classical rank 1 update formula

�
1/2
i+1 = (1 − γi+1)

1/2�
1/2
i

+
√

1 + γi+1
1−γi+1

‖�−1/2
i (Xi+1 − μi)‖2 − 1

‖�−1/2
i (Xi+1 − μi)‖2

× (1 − γi+1)
1/2 (Xi+1 − μi) (Xi+1 − μi)

T�
−T/2
i

where AT/2 is a shorthand notation for (A1/2)T whenever
this quantity is well defined. This expression can be simpli-
fied through an expansion (requiring γi+1 � 1) and modi-
fied to enforce a lower triangular form as follows

�
1/2
i+1 = �

1/2
i + γi+1�

1/2
i L

×
(
�

−1/2
i (Xi+1 − μi) (Xi+1 − μi)

T�
−T/2
i − I

)
,

where L(A) is the lower triangular part of matrix A. Note
again the familiar stochastic approximation form of the re-
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cursion, whose mean field is

L
(
�−1/2 (�π + (μ − μπ) (μ − μπ)T

)
�−T/2 − I

)
,

and whose zeros (together with those of the recursion on
the mean) are precisely any square root of �π . The operator
ensures that the recursion is constrained to lower triangu-
lar matrices. Note that this is only required if one wishes to
save memory. Rank r updates can also be used when the co-
variance matrix is updated every r iterations only. In what
follows, whenever covariance matrices are updated, recur-
sions of this type can be used although we will not make
this explicit for notational simplicity.

5.1.2 Compound criterion: global approach

As pointed out earlier, in the case of the N-SRWM algo-
rithm the scaling of the proposal distribution is well under-
stood in specific scenarios and intuitively meaningful for a
larger class of target distributions. A good rule of thumb is
to choose λ = (2.382/nx)�π , where �π is the covariance
matrix of π . We have shown above that following (Haario
et al. 2001) one can in principle estimate �π from the past
of the chain. However the difficulties that lead to the de-
sire to develop adaptive algorithms in the first place, includ-
ing the very poor exploration of the target distribution of
π , also hinder learning about the target distribution in the
initial stages of an adaptive MCMC algorithm when our ini-
tial value for the estimator of �π is a poor guess. Again if
λ�i is either too large in some directions or too small in
all directions the algorithm has either a very small or a very
large acceptance probability, which results in a very slow
learning of �π since the exploration of the target’s support
is too localised. This is a fundamental problem in practice,
which has motivated the use of delayed rejection for exam-
ple (Haario et al. 2003), and for which we present here an
alternative solution which relies on the notion of composite
criterion.

While theory suggests a scaling of λ = 2.382/nx we pro-
pose here to adapt this parameter in order to coerce the
acceptance probability to a preset and sensible value (e.g.
0.234), at least in the initial stages of the algorithm. Indeed,
while this adaptation is likely not to be useful in the long-
run, this proves very useful in the early stages of the algo-
rithm (we provide a detailed illustration in Sect. 6.3) where
the pathological behaviour described above can be detected
through monitoring of the acceptance probability, and cor-
rected.

As a consequence in what follows the proposal distri-
bution of the adaptive N-SRWM algorithm we consider
is qθ (z) = N (z;0, λ�) where here θ := (λ,μ,�). As-
suming that for any fixed covariance matrix � the corre-
sponding expected acceptance probability ᾱλ (see (14)) is

a non-increasing function of λ, one can naturally suggest
the recursion logλi+1 = logλi + γi+1[α(Xi,Yi+1) − ᾱ∗],
which following the discussion of Sect. 4 is nothing but a
standard Robbins-Monro recursion. Now when the covari-
ance matrix �π needs to be estimated, one can suggest
the following “compound criterion” or “multicriteria” algo-
rithm:

Algorithm 4 AM algorithm with global adaptive scaling
• Initialise X0,μ0 and �0.
• At iteration i + 1, given Xi,μi,�i and λi

1. Sample Yi+1 ∼ N (Xi, λi�i) and set Xi+1 = Yi+1

with probability α(Xi,Yi+1), otherwise Xi+1 = Xi .
2. Update

log(λi+1) = log(λi) + γi+1[α(Xi,Yi+1) − ᾱ∗],
μi+1 = μi + γi+1(Xi+1 − μi), (31)

�i+1 = �i + γi+1[(Xi+1 − μi)(Xi+1 − μi)
T − �i].

Again the interest of the algorithm is as follows: when-
ever our initial guess �0 is either two large or two small,
this will be reflected in either a large or small acceptance
probability, meaning that learning of �π is likely to be slow
for a fixed scaling parameter. However this measure of per-
formance of the algorithm can be exploited as illustrated
above: if α(Xi,Yi+1) − ᾱ∗ < 0 for most transition attempts
then λi should be decreased, while if on the other hand
α(Xi,Yi+1) − ᾱ∗ ≥ 0 for most transition attempts, then λi

should be increased. As a result one might expect a more
rapid exploration of the target distribution following a poor
initialisation. Although this strategy can improve the perfor-
mance of the standard AM algorithm in practice, we show
in the next section that it is perfectible.

5.1.3 Compound criterion: local approach

As we shall now see, the global approach described in the
previous subsection might be improved further. There are
two reasons for this. First it should be clear that adjusting
the global scaling factor ignores the fact that the scaling of
λi�i might be correct in some directions, but incorrect in
others. In addition, in order to be efficient, such bold up-
dates require in general some good understanding of the de-
pendence structure of the target distribution, in the form of
a reasonable estimate of �π , which is not available in the
initial stages of the algorithm. These problems tend to be
amplified in scenarios involving a large dimension nx of the
space X since innocuous approximations in low dimensions
tend to accumulate in larger cases. Inspired by Haario et
al. (2005), we suggest the following componentwise update
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strategy which consists of a mixture of timid moves whose
role is to attempt simpler transitions better able to initiate
the exploration of π . Note, however, that in contrast with
(Haario et al. 2005) our algorithm uses the notion of com-
pound criterion, which in our experience significantly im-
proves performance. With ek the vector with zeroes every-
where but for a 1 on its k-th row and a sensible ᾱ∗∗ ∈ (0,1)

e.g. 0.44:

Algorithm 5 Componentwise AM with componentwise
adaptive scaling

• Initialise X0,μ0,�0 and λ1
0, . . . , λ

nx

0 .
• At iteration i + 1, given μi,�i and λ1

i , . . . , λ
nx

i

1. Choose a component k ∼ U {1, . . . , nx}.
2. Sample Yi+1 ∼ Xi + ek N (0, λk

i [�i]k,k) and set
Xi+1 = Yi+1 with probability α(Xi,Yi+1), otherwise
Xi+1 = Xi .

3. Update

log(λk
i+1) = log(λk

i ) + γi+1[α(Xi,Yi+1) − ᾱ∗∗],
μi+1 = μi + γi+1(Xi+1 − μi), (32)

�i+1 = �i + γi+1[(Xi+1 − μi)(Xi+1 − μi)
T − �i]

and λ
j

i+1 = λ
j
i for j 
= k.

One might question the apparently redundant use of both
a scaling λk

i and the marginal variance [�i]k,k in the pro-
posal distributions above, and one might choose to com-
bine both quantities into a single scaling factor. However the
present formulation allows for a natural combination (i.e. a
mixture or composition) of the recursion above and varia-
tions of the standard AM algorithm (Algorithm 2) such as
Algorithm 4. Such combinations allow one to circumvent
the shortcomings of bold moves, which require extensive
understanding of the structure of π , in the early iterations of
the algorithm. The timid moves allow the procedure to start
gathering information about π which might then be used by
more sophisticated and more global updates.

We now turn to yet another version of the AM algorithm
(Algorithm 2) which can be understood as being a version
of Algorithm 4 which exploits the local scalings computed
by Algorithm 5 instead of a single global scaling factor. It
consists of replacing the proposal distribution N (Xi, λi�i)

in Algorithm 4 with N (Xi, �
1/2
i �i�

1/2
i ), where

�i := diag
(
λ1

i , . . . , λ
nx

i

)
.

As we now show, such an update can be combined with Al-
gorithm 5 into a single update. For a vector V we will de-
note V (k) its k-th component and ek the vector with zeroes
everywhere but for a 1 on its k-th row. We have,

Algorithm 6 Global AM with componentwise adaptive scal-
ing

• Initialise X0,μi,�i and λ1
i , . . . , λ

nx

i .
• Iteration i + 1

1. Given μi,�i and λ1
i , . . . , λ

nx

i , sample Zi+1 ∼
N (0,�

1/2
i �i�

1/2
i ) and set Xi+1 = Xi + Zi+1 with

probability α(Xi,Xi + Zi+1), otherwise Xi+1 = Xi .
2. Update for k = 1, . . . , nx

log(λk
i+1) = log(λk

i ) + γi+1[α(Xi,Xi + Zi+1(k)ek)

− ᾱ∗∗],
(33)

μi+1 = μi + γi+1(Xi+1 − μi),

�i+1 = �i + γi+1[(Xi+1 − μi)(Xi+1 − μi)
T − �i].

It is naturally possible to include an update for a global
scaling parameter, but we do not pursue this here. This al-
gorithm exploits the fact that a proposed sample Xi + Zi+1

provides us with information about scalings in various di-
rections through the “virtual” componentwise updates with
increments {Zi+1(k)ek} and their corresponding directional
acceptance probabilities. This strategy naturally requires
nx + 1 evaluations of π , which is equivalent to one update
according to Algorithm 4 and nx updates according to Al-
gorithm 5.

5.2 Fitting mixtures, clustering and localisation

As pointed out in Andrieu and Moulines (2006, Sect. 7) the
moment matching criterion corresponding to the recursion
(27) can be understood as minimising the Kullback-Leibler
divergence

KLθ(π,qθ ) := Eπ

(
log

π(X)

q̆θ (X)

)
(34)

where q̆θ (x) = N (x;μ,�) (but using qθ (z) = N (z;0, λ�)

as a proposal distribution for the increments of a N-SRWM
update). This remark leads to the following considerations,
of varying importance.

The first remark is that q̆θ could be used as the proposal
distribution of an independent MH (IMH) update, as in An-
drieu and Moulines (2006) or Giordani and Kohn (2006).
Although this might be a sensible choice when q̆θ (x) is a
good approximation of π , this might fail when θ is not close
to θ∗ (in the transient for example) or simply because the
chosen parametric form is not sufficiently rich. In addition
such a bad behaviour is generally exacerbated by large di-
mensions as illustrated by the following toy example.

Example 1 The target distribution is π(x) = N (x;0, I )

with x ∈ R
nx and proposal distribution q(x) = N (x; ε ×
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e, I ) for some ε > 0 with e = (1,1,1, . . .)T. The importance
sampling weight entering the acceptance ratio of an IMH
algorithm is

π(x)

q(x)
= exp

(
1

2
ε2nx − εeTx

)

= exp

(
−1

2
ε2nx − εn

1/2
x n

−1/2
x

nx∑
i=1

(x(i) − ε)

)
,

which is not bounded, hence preventing geometric ergod-
icity. The distribution of n

−1/2
x

∑nx

i=1(x(i) − ε) is precisely
N (0,1), which results in a variance for the weights of

exp
(
ε2nx

)
− 1.

This is known to result in poorly performing importance
sampling algorithms, but will also have an impact on the
convergence of IMH algorithms which will get stuck in
states x with arbitrarily large weights x as nx increases, with
non negligible probability.

IMH updates hence fall in the category of “very bold”
updates which require significant knowledge of the structure
of π and do not usually form the base for reliable adaptive
MCMC algorithms.

The second remark, which turns out to be of more inter-
est, is that one can consider other parametric forms for q̆θ ,
and use such approximations of π to design proposal distri-
butions for random walk type algorithms, which are likely
to perform better given their robustness. It is suggested in
Andrieu and Moulines (2006, Sect. 7) to consider mixtures,
finite or infinite, of distributions belonging to the exponen-
tial family (see also Cappé et al. 2007 for a similar idea in the
context of importance sampling/population Monte Carlo).
This has the advantage of leading to an elegant optimisa-
tion algorithm which relies on an on-line version of the EM
algorithm and results in a marginal additional computational
overhead.

In this section we first detail two particular cases of this
procedure: mixture of normal distributions and Student t-
distributions.

5.2.1 Updates for fitting mixtures in the exponential family

We first briefly review how, given samples {Xi}, it is possi-
ble to iteratively fit a mixture

q̆θ (x) =
n∑

k=1

wk N (x;μk,�k), (35)

with θ = (w,μ,�) with w = (w1,w2, . . . ,wn), in order
to minimise (34). For the purpose of describing the al-
gorithm it is convenient to introduce the missing data z

such that q̆θ (x, z = k) := wk N (x;μk,�k) and hence for
k ∈ {1, . . . , n}

q̆θ (k|x) = wk N (x;μk,�k)

q̆θ (x)

= wk N (x;μk,�k)∑n
l=1 wl N (x;μl,�l)

.

Now for any k ∈ {1, . . . , n} and i ≥ 0 the recursions are, with

q̆θi
(Zi+1 = k|x) := wk

i N (x;μk
i ,�

k
i )

q̆θi
(x)

,

μk
i+1 = μk

i + γi+1 q̆θi
(Zi+1 = k|Xi+1)(Xi+1 − μk

i ),

�k
i+1 =�k

i + γi+1 q̆θi
(Zi+1 = k|Xi+1)

× [(Xi+1 − μk
i )(Xi+1 − μk

i )
T − �k

i ],
(36)

wk
i+1 = wk

i + γi+1(q̆θi
(Zi+1 = k|Xi+1) − wk

i ).

Note that the standard EM framework suggests various ac-
celeration techniques, which we do not consider here for
brevity.

It is also possible to consider a mixture of multivariate
Student-t distributions, which is a mixed continuous/discrete
mixture of normals. More precisely consider the case where

q̆θ (x) =
n∑

k=1

wk Tν(x;μk,�k)

where

Tν(x;μ,�)

= �(ν+nx

2 ) |�|−1/2

(πν)
1
2 nx �(ν

2 )(1 + 1
ν
(x − μ)T�−1(x − μ))

1
2 (ν+nx)

.

We consider here for simplicity the case “one ν for all” since
we are not interested in a very precise fit of the target distri-
bution. Note that as ν → ∞ the mixture converges to a mix-
ture of normal distributions which coincides with that de-
scribed above. The on-line EM algorithm relies on the stan-
dard fact that q̆θ (x) can be seen as the marginal distribution
of

q̆θ (k, u, x) = wku
nx

√|2π�k| exp

(−u

2
(x − μk)

T�−1
k (x − μk)

)

× (ν/2)ν/2

�(ν/2)
uν/2−1 exp

(
−ν

2
u
)

I{u ≥ 0}.

We denote

q̆θi
(Zi+1 = k|Xi+1) := wk

i Tν(x;μk
i ,�

k
i )

q̆θi
(x)
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and introduce the conditional expectation of U given X

and Z

ū(k,X) := E
θ [U |k,X] = ν + nx

ν + (X − μk)T�
−1
k (X − μk)

.

The required recursions are

μk
i+1 = μk

i + γi+1 ū(k,Xi+1)q̆θi
(Zi+1 = k|Xi+1)

× (Xi+1 − μk
i ),

�k
i+1 =�k

i + γi+1 ū(k,Xi+1)q̆θi
(Zi+1 = k|Xi+1)

× [(Xi+1 − μk
i )(Xi+1 − μk

i )
T − �k

i ],
wk

i+1 = wk
i + γi+1(q̆θi

(Zi+1 = k|Xi+1) − wk
i ),

ūk
i+1 = ūk

i + γi+1

(
ū(k,Xi+1)q̆θi

(Zi+1 = k|Xi+1) − ūk
i

)
.

This later choice is closely related to the “fast K-mean” al-
gorithm used in Giordani and Kohn (2006) (although the
algorithm developed there is not on-line, whereas the al-
gorithm developed here is computationally very efficient)
which is beneficial in the initial stages of the algorithm in
order to start the learning process. In practice we suggest
that when fitting a mixture of normal distributions, the recur-
sions for the Student t-distributions be used with a parameter
νi → ∞ with the iterations.

5.2.2 Localised random walk Metropolis updates

The Metropolis-Hastings algorithm in its simplest form of-
fers the possibility for local adaptation given the possible
dependence of its family of proposal distributions {q(x, ·),
x ∈ X} on the current state of the Markov chain. Obvious
examples include the Langevin algorithm or self-targeting
schemes (Stramer and Tweedie 1999). This dependence is
exploited further in Green (1995) where the weights of a
mixture of MH updates are allowed to depend on the current
state x of the Markov chain, hence offering the possibility to
select a particular update depending on the region currently
visited by, say, state Xi = x.

We now describe an original use of the information about
π contained in the approximation q̆θ (x) of π which al-
lows for some localisation of the adaptation in the spirit
of a suggestion in Andrieu and Robert (2001) concerned
with Voronoi tesselations (for which the Linde-Buzo-Gray,
an EM like algorithm, could be used here). We however re-
strict here the presentation to that of an algorithm for which
q̆θ (x) is a mixture of normal distributions—other cases are
straightforward extensions. Note that another form of locali-
sations has been suggested in Roberts and Rosenthal (2006),
which is more in line with the ideas of Stramer and Tweedie
(1999), and can lead to interesting algorithms.

The algorithm we suggest here is a mixture of N-SRWM
algorithms—one should bear in mind that such an algorithm

will in general be a component of a much larger mixture
or part of a composition of updates. The interest of our ap-
proach is that following (Green 1995) we allow the weights
of the mixture to depend on the current state of the chain.
More precisely one can suggest for example using

Pθ(x, dy) =
n∑

k=1

q̆θ (k|x)P NSRWM
θ,k (x, dy)

where θ = (μ1:n,�1:n,w1:k,λ1:k) and the transition
P NSRW

θ,k (x, dy) is a random walk Metropolis algorithm with
proposal distribution, here in the normal case, N (y;x,

λk�k). Note that other choices than the weights q̆θ (k|x)

can be chosen in order to ensure, in particular in the early
stages of the algorithm, that all components are being used.
In the case of a mixture of normals one can for example
suggest using the conditional distribution q̆θ (k|x) for a mix-
ture of Student t-distributions with a parameter νi → ∞
as i → ∞. The choice of λk is made adaptive in order to
achieve a preset acceptance probability, according to (31).
The motivations for this algorithm are twofold: (a) first the
weight q̆θ (k|x), or a function of this quantity, favours associ-
ation of x to relevant components of the mixture of distribu-
tions q̆θ (x), that is for example the local linear dependencies
present among the components of x through the covariance
matrices �1:n (b) secondly q̆θ (x) can be used in order to
cluster states of X and associate local criteria to each clus-
ter (here a local expected acceptance probability but other
choices are possible) which in turn can be locally adapted
using a rule of our choice. Note the advantage of this al-
gorithm in terms of innovation (or exploration in machine
learning speak) over a simple IMH algorithm that would try
to sample and learn from its own samples.

The algorithm can be summarised with the following
pseudo-code in the case where a mixture of normal distri-
butions is used in order to map the state-space.

Algorithm 7 Localised N-SRWM algorithm

• Initialise X0,μ
1:n
0 ,�1:n

0 ,w1:n
0 and λ1:n

0 .
• Iteration i + 1, given Xi,μ

1:n
i ,�1:n

i ,w1:n
i and λ1:n

i

1. Zi+1 ∼ q̆θi
(Z = k|Xi), Yi+1 ∼ N (Xi, λ

Zi+1
i �

Zi+1
i )

and set Xi+1 = Yi+1 with probability

min{1,
π(Yi+1)q̆θi

(k|Yi+1)

π(Xi)q̆θi
(k|Xi)

}, otherwise Xi+1 = Xi .

2. Update μ1:n
i ,�1:n

i ,w1:n
i and λ1:k

i to μ1:n
i+1,�

1:n
i+1,w

1:n
i+1

and λ1:n
i+1, according to (36) and (37).

The localised nature of the algorithm, in the spirit of the
state dependent mixtures of updates of Green (1995), re-
quires some care. Firstly note the form of the acceptance
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probability required in order to ensure that the underlying
“fixed θ” transition probability is in detailed balance with π

αk(x, y) := min

{
1,

π(y)q̆θ (k|y)

π(x)q̆θ (k|x)

}
.

Secondly, updating of the parameters requires some atten-
tion. Indeed, given that component k is chosen, we wish
to adjust the conditional expected acceptance probability of
this component in order to reach an expected acceptance rate
ᾱ∗. In mathematical terms we wish to set the following mean
field h(θ) with components hk(θ) to zero,

hk(θ) :=
∫

X2

π(x)q̆θ (k|x)N (y;x,λk�k)∫
X π(x)q̆θ (k|x)dx

αk(x, y)dxdy − ᾱ∗

=
∫

X2 π(x)q̆θ (k|x)N (y;x,λk�k) (αk(x, y) − ᾱ∗) dxdy∫
X π(x)q̆θ (k|x)dx

,

where the fraction on the first line is the density of the condi-
tional steady state distribution P

θ (X ∼ π,Y ∼ N (X,λk�k)|
Z = k). Finding the zeros of hk(θ) hence amounts to finding
the zeros of the top of the last fraction, which can be written
as an expectation

n∑
m=1

∫
X2

π(x)q̆θ (m|x)I{m = k}

× N (y;x,λk�k) (αk(x, y) − ᾱ∗) dxdy

=
n∑

m=1

∫
X2

π(x)q̆θ (m|x)N (y;x,λm�m)

× I{m = k} (αk(x, y) − ᾱ∗) dxdy.

The second form of hk(θ) above (and since the denominator
does not (in general) affect the zeros of hk(θ)) suggests the
following recursions to update {λk

i } and compute the com-
ponents’ running expected acceptance probabilities {αk

i }

log(λk
i+1) = log(λk

i ) + γi+1I{Zi+1 = k}
× [

αk(Xi,Yi+1) − ᾱ∗
]
,

αk
i+1 = αk

i + γi+1I{Zi+1 = k}
[
αk(Xi,Yi+1) − αk

i

]
.

(37)

Naturally we do not address here the choice of the number
n of components of the mixture. Although the use of simple
information criteria could be advocated in order to choose n,
even in a crude way, we believe that although feasible this
might lead to additional complications at this stage. We here
simply argue that choosing n > 1 should in general be ben-
eficial compared to the use of a plain N-SRWM for which
n = 1. Alternatively one can suggest the possibility of fitting
simultaneously several mixtures with each its own number
of components.

5.3 Block sampling and principal directions

For large dimensional problems, updating the whole vector
X in one block might lead to a poorly performing algorithm
which fails to explore the distribution π of interest. It is stan-
dard in practice to attempt to update subblocks of X con-
ditional upon the corresponding complementary subblock,
which in practice facilitates the design of better proposal
distributions. The choice of such subblocks is however in
practice crucial while far from obvious in numerous situa-
tions. Indeed it is well known and easy to understand that
variables that are highly dependent components of X (under
π ) should in practice be updated simultaneously as it can
otherwise lead to algorithms that are slow to converge, and
produce samples with poor statistical properties. Identifying
such subblocks of dependent components can be very dif-
ficult in practice, and it is natural to ask if it is possible to
automatise this task in practice.

A possible suggestion is to consider an MCMC update
that takes the form of a mixture of MCMC updates

Pθ (x, dy) =
n∑

k=1

ωk(θ)Pk,θ (x, dy) , (38)

where for any θ ∈ �,
∑n

k=1 ωk(θ) = 1, ωk(θ) ≥ 0 and
{Pi,θ , i = 1, . . . , n} is a family of “partial” updates which
correspond to all the possible partitions of vector X. Then
one can suggest updating the weights {ωk(θ)} according to
some criterion. This is of course not realistic in practice as
soon as the dimension nx of X is even moderate, and can
lead to very poorly mixing algorithms since intuitively all
the possible transitions should be tried in order to assess
their efficiency. This might be inefficient as we expect only
a restricted number of these transitions to be of real interest.

Instead we suggest here a simple alternative which re-
lies on principal component analysis and a natural and well
known generalisation able to handle multi-modal distribu-
tions. Our algorithms rely on the recursive diagonalisation
of either the estimates {�i} of the covariance matrix �π or
the covariance matrices {�k

i , k = 1, . . . , n} used to approxi-
mate the target distribution π , e.g. using a mixture of normal
or Student t-distributions. We will focus here on the former
scenario for simplicity, the extension to the mixture of dis-
tributions case is straightforward.

5.3.1 Updates description

Formally this update is of the form (38) where Pk,θ (x, dy)

is a one-dimensional random walk Metropolis update along
eigenvector k of the covariance matrix �π , with a scaling
factor �(k) which ensures a predetermined acceptance prob-
ability. We will describe below the recursive estimation of
the first m (≤ nx ) eigenvectors of �π , which we assume
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form the columns of an nx ×m matrix W (the columns being
denoted w(l), l = 1, . . . ,m) and the corresponding eigenval-
ues ρ(l). We denote hereafter ρ̄(l) := ρ(l)/

∑m
p=1 ρ(p) the

normalised eigenvalues and let d(1), . . . , d(m) denote an ar-
bitrary distribution on the first m positive integers. The up-
date at iteration i proceeds as follows:

Algorithm 8 Principal components Metropolis update
• At iteration i + 1, given Xi and (�i, ρi,Wi)

1. Sample an update direction l ∼ (d(1), d(2), . . . ,

d(m)).
2. Sample Zi+1 ∼ N (0, �i(l)ρi(l)), set Yi+1 = Xi+1 +

Zi+1 w(l).
3. Set Xi+1 = Yi+1 with probability min{1,π(Yi+1)/

π(Xi)}, otherwise Xi+1 = Xi .
4. Update (�i, ρi,Wi) to (�i+1, ρi+1,Wi+1) in light of

Xi+1.

In words, at every iteration one of the available princi-
pal direction l is randomly selected, here according to the
probability d(1), d(2), . . . , d(m) (d(j) = ρ̄(j) being a pos-
sibility) but other choices are possible, and a “univariate”
random walk update in the direction w(l) is then attempted
with an increment drawn from N (0, �i(l)ρi(l)), where �(l)

is a directional scaling factor adjusted to ensure that updates
in direction l have a preset acceptance probability—it uses
an update of the type (22). This enables finer scaling in every
principal direction. Note that this update might correspond
to a reducible algorithm when m < nx , but that this should
not be a difficulty when used in combination with other up-
dates.

We now turn to the description of an on-line algorithm for
the computation of the m first eigenvectors of the covariance
matrix of samples {Xi}. The algorithm relies on an on-line
EM algorithm for the popular probabilistic PCA (PPCA) al-
gorithm.

5.3.2 Online PCA recursion

The basis for PPCA was laid by Tipping and Bishop (1999)
who endowed the problem with a linear Gaussian model.
Even though the possibility of using an EM-algorithm is
mentioned, it is Roweis (1997) who extends the formalism
more specifically to the application of such a scheme. The
approach suffers however from a rotational ambiguity in the
latent variable space, since the returned vector set is a linear
superposition of the principal components, inducing a need
for post-processing. This drawback is overcome by Ahn and
Oh (2003) through the introduction of a constrained EM-
algorithm that corresponds to using several coupled models,

rather than a single model. These papers assume that all ob-
servations are present initially, whereas the adaptive algo-
rithm presented in this project needs to determine the prin-
cipal eigenvectors on-line. Ghasemi and Sousa (2005) refor-
mulate the constrained EM in order to achieve this. Roweis
(1997) mentions an on-line version, but it was not further
explored here because of the inherent rotational ambiguity.

The structure that is employed in PPCA is closely related
to factor analysis. This linear model is founded on the as-
sumption that the d-dimensional data can be explained by
a m-dimensional unobservable variable Z and an additive
noise ε,

Xi = WZi + ε, (39)

where W is a nx × m real valued matrix of factor loadings,

Zi
iid∼ N (0, Im) and ε ∼ N (0,R), where usually R = σ 2Inx

for some σ 2 > 0. It can be shown that the ML estimator of
W contains the eigenvectors and the latent variables struc-
ture suggests the use of an EM-algorithm. It is possible to
alter this problem in order to exactly remove the rotational
ambiguity, leading to the following recursion (for σ 2 = 0)

Wi+1 = �i+1Wi L(WT
i Wi)

−1

× U
(

L(WT
i Wi)

−1WT
i �i+1Wi L(WT

i Wi)
−1
)−1

where �i is an estimate of the covariance matrix of π at it-
eration i of the algorithm, while for a square matrix L(A)

(resp. U (A)) is the lower (resp. upper) part of A. Note the
computationally interesting feature of this recursion where
the inversion of triangular, rather than full, matrices is re-
quired. Roweis (1997) also provides an EM-algorithm for
PPCA without taking the zero-error limit, in what is called
Sensible PCA.

5.4 Discrete valued random vectors: the Gaussian copula
approach

So far we have implicitly assumed that π has a density with
respect to the Lebesgue measure and de facto excluded the
case where π is the probability distribution of a discrete
valued vector. This problem has been largely overlooked in
the literature, with however the exception of Nott and Kohn
(2005). We here briefly describe a strategy proposed in An-
drieu and Moffa (2008) which, as we shall see, offers the
possibility to exploit the tools developed for the purely con-
tinuous case in earlier sections. It differs from the work pre-
sented so far in this paper in that, as we shall see, the distri-
bution π or interest is embedded in an extended probability
model, which needs to be adapted.

In order to simplify presentation we will focus on the case
where X = {0,1}nx , the generalisation to scenarios involving
a larger number of discrete states or a mixture of continuous



Stat Comput (2008) 18: 343–373 365

and discrete valued random variables being straightforward.
Note that this simple scenario is of interest in the context
of variable selection, but also in the context of inference in
Ising models. The strategy consists of embedding the dis-
crete valued problem into a continuous framework by means
of an auxiliary variable z taking its values in Z := R

nx . More
precisely, consider the following distribution

π̃μ(x, z)

:= π(x)

nx∏
i=1

N (z(i);μ(i),�(i, i))

��(i,i) (μ(i))x(i) (1 − ��(i,i) (μ(i)))1−x(i)

× I{z ∈ Ix},
where �σ 2(u) is the cumulative distribution function of the
univariate centered normal distribution with variance σ 2,
μ,� ∈ R

nx × R
nx×nx and Ix := Ix(1) × Ix(2) × · · · × Ix(nx)

with I0 := (−∞,0] and I1 := (0,+∞). Note that the eval-
uation of �σ 2(u) is routine, and that whenever π(x) can
be evaluated pointwise up to a normalising constant so can
π̃μ(x, z), therefore allowing the use of standard sampling al-
gorithms. One can notice that marginally π̃μ(x) = π(x) but
also that

π̃μ(x(i)|z) ∝ I{z(i) ∈ Ix(i)},
a type of deterministic relationship between z and x. These
properties suggest that the problem of sampling from π(x)

can be replaced by that of effectively sampling the continu-
ous component z ∼ π̃μ(z) followed by the determination of
the unique x satisfying I{z ∈ Ix} = 1.

Naturally not all choices of μ ∈ R
nx will lead to efficient

sampling algorithms for a given distribution π and we note
in addition that the component z does not capture the de-
pendence structure of π(x). We shall see now how adap-
tive procedures can be of great help here. Consider the fol-
lowing distribution and denote θ := {μ, μ̆,�, �̆} for some
μ̆, �̆ ∈ R

nx × R
nx×nx

q̆θ (x, z) := N (z; μ̆, �̆) I{z ∈ Ix},
whose marginal q̆θ (x) is often used to model the distribu-
tion of multivariate discrete valued random vectors e.g. in
the context of multivariate probit regression models. A par-
ticular strength of the model is that the dependence struc-
ture of q̆θ (x) is parametrised by the pair μ̆, �̆ and that
sampling from q̆θ (x) is straightforward. However q̆θ (x) is
usually intractable, precluding its direct use to approximate
π(x). A natural suggestion here is simply to work on the
extended space X × Z and approximate π̃θ (x, z) := π̃μ(x, z)

with q̆θ (x, z). For example, with the natural choice μ = μ̆

and � = �̆ one could suggest minimising the following
Kullback-Leibler divergence
∫

X×Z
π̃θ (x, z) log

π̃θ (x, z)

q̆θ (x, z)
dxdz.

Given the structure of π̃θ (x, z), it is clear that the result-
ing q̆θ (x, z) is meant to “learn” both the marginals and
the dependence structure of π(x). Assuming that this can
be achieved, even approximately, q̆θ (x, z) and its parame-
ters can be used in multiple ways in order to sample from
π̃θ (x, z). Following the ideas developed in earlier sections,
one could suggest to use q̆θ (x, z) as a proposal distribution
in an IMH algorithm targeting π̃θ (x, z). Indeed sampling
from q̆θ (x, z) is straightforward since it only requires one
to sample from Z ∼ N (μ,�) and to determine X such that
I{Z ∈ IX} = 1. However, as argued earlier, using the IMH
sampler is not always a good idea, and one could instead
suggest a more robust random walk Metropolis type algo-
rithm. For example, for some λ > 0 and θ , we have

Algorithm 9 The Gaussian copula SRWM
• At iteration i + 1, given Xi

1. Sample Z = Zi + W with W ∼ N (0, λ�̆).
2. Determine X such that I{Z ∈ IX} = 1.
3. Set (Xi+1,Zi+1) = (X,Z) with probability

min

{
1,

π̃θ (X,Z)

π̃θ (Xi,Zi)

}
,

otherwise (Xi+1,Zi+1) = (Xi,Zi).

The problem of effectively determining �̆ can be ad-
dressed by using an adaptive algorithm, and in particular by
using recursions of the type (31) or (32) in the case of an up-
date component by component for example. More generally
all the strategies developed earlier in this paper for the con-
tinuous case can be adapted to the discrete setup (Andrieu
and Moffa 2008). Note however that the target distribution
now depends on θ and that a slight modification of the con-
vergence theory outlined earlier is required in this scenario.

6 Examples of applications

6.1 Erratic normal distribution

In this section we first demonstrate the practical interest of
the idea of compound criteria developed in Sect. 5.1 which
aims to accelerate the learning of features of the target dis-
tribution by the algorithm. Following Roberts and Rosen-
thal (2006) we consider a normal distribution N (0,�π =
MMT) defined on X = R

nx with M a nx × nx matrix with
i.i.d. entries sharing the distribution N (0,1)—we focus here
on the case nx = 50. The algorithm we use consists of a mix-
ture of Algorithms 4–5 and 8. Comparison with the stan-
dard AM algorithm is provided in Figs. 1–3 for a realisa-
tion of each of the algorithm and for the same number of
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Fig. 1 Comparison of the
expected acceptance probability
of the standard AM algorithm
(bottom) and the corresponding
global update used by the
multi-criteria algorithm as a
function of the iterations

Fig. 2 Comparison of the R

coefficient for the standard AM
algorithm (top) and the
multi-criteria algorithm
(bottom) as a function of the
iterations

Fig. 3 Comparison of the 50
ordered estimated eigenvalues
after 50,000 iterations. Top:
truth. Middle: multi-criteria
algorithm. Bottom: standard AM
algorithm

evaluations of π . The coefficient R ≥ 1 is precisely defined
in Roberts and Rosenthal (2006). It is a measure of mis-
match between �π and any arbitrary covariance matrix �

related to the asymptotic performance of the N-SRWM, the
value R = 1 corresponding to optimality. Although poten-
tially useful the comparison of the eigenvalues alone might
be misleading without a comparison of the quality of the
eigenvectors—the R coefficient does this.

The gains are clear in terms of the number of evaluations
of the target density, whose computational cost will in gen-
eral dominate that of the additional recursions needed for
adaptation.

6.2 The banana example

The banana distribution, introduced in Haario et al. (1999)
and Haario et al. (2001) is a popular example to test adap-
tive algorithms since it presents the advantage of analytical
tractability of numerous characteristics, while allowing for a

Table 1 Summaries (mean + / − std): Norm of the first moment’s es-
timator, based on 100 runs. Different banana-shaped Gaussian distrib-
utions are used and compared to the results of the adaptive Metropolis
sampler (AM) presented by Haario et al. (1999). Since the target is
centered, the norm’s correct value is zero

nx Norm‖Eπ [X]‖
π1 = B0.03 π2 = B0.1

Multi-criteria AM Multi-criteria AM

2 1.13 ± 0.74 1.10 ± 0.67 2.80 ± 1.47 2.62 ± 1.61

4 1.33 ± 0.79 1.27 ± 0.77 5.20 ± 5.69 5.13 ± 12.85

8 1.17 ± 0.67 1.31 ± 0.72 4.99 ± 3.99 4.85 ± 4.20

non-linear dependency between its components. Formally it
is the distribution of a normally distributed multivariate nor-
mal random X ∼ N (0,�) for nx ≥ 2 which undergoes the
transformation

[X1,X2 + b(X2
1 − 100),X3, . . . ,Xnx ],
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Table 2 Empirical quantiles of adaptive MCMC output based on 25 runs of length 80,000 (burn-in: 60,000 lags), Banana-shaped target B0.03 in
nx dimensions and an adaptive mixture of three Gaussian distributions, used as proposal, maximum deviation per dimension in red

nx Banana-shaped target π1 = B0.03

Quantile (in %)

10 20 30 40 50 60 70 80 90

2 9.60 ± 0.60 19.54 ± 0.74 29.29 ± 1.07 39.52 ± 1.34 49.63 ± 1.58 59.78 ± 1.85 70.14 ± 1.87 80.38 ± 1.65 90.22 ± 1.24

5 9.55 ± 0.75 19.33 ± 1.08 29.05 ± 1.36 39.17 ± 1.67 49.32 ± 1.98 59.42 ± 2.18 69.37 ± 1.97 79.65 ± 1.80 89.93 ± 1.25

7 9.79 ± 0.81 19.49 ± 1.28 29.43 ± 1.56 39.46 ± 2.09 49.51 ± 2.27 59.58 ± 2.18 69.66 ± 2.04 79.87 ± 1.62 90.15 ± 1.18

9 9.69 ± 1.12 19.58 ± 1.87 29.57 ± 2.33 39.47 ± 2.54 49.47 ± 2.60 59.56 ± 2.43 69.71 ± 1.95 79.47 ± 1.62 90.22 ± 1.22

15 10.27 ± 1.14 20.46 ± 1.84 30.81 ± 2.23 40.77 ± 2.39 50.83 ± 2.31 60.95 ± 2.00 70.95 ± 1.81 80.86 ± 1.54 90.41 ± 1.03

Table 3 Empirical quantiles of adaptive MCMC output based on 25 runs of length 80,000 (burn-in: 60,000 lags), Banana-shaped target B0.1 in nx

dimensions and an adaptive mixture of three Gaussian distributions, used as proposal

nx Banana-shaped target π2 = B0.1

Quantile (in %)

10 20 30 40 50 60 70 80 90

2 9.60 ± 0.60 19.54 ± 0.74 29.29 ± 1.07 39.52 ± 1.34 49.63 ± 1.58 59.78 ± 1.85 70.14 ± 1.87 80.38 ± 1.65 90.22 ± 1.24

5 9.55 ± 0.75 19.33 ± 1.08 29.05 ± 1.36 39.17 ± 1.67 49.32 ± 1.98 59.42 ± 2.18 69.37 ± 1.97 79.65 ± 1.80 89.93 ± 1.25

7 9.79 ± 0.81 19.49 ± 1.28 29.43 ± 1.56 39.46 ± 2.09 49.51 ± 2.27 59.58 ± 2.18 69.66 ± 2.04 79.87 ± 1.62 90.15 ± 1.18

and we denote hereafter Bb(�) the distribution of this ran-
dom vector, and simply Bb when � is the identity matrix,
except for the top left element which is 100. We compare
the performance of a mixture of updates based on Algo-
rithm 7 which uses for each of the mixture component ei-
ther Algorithm 6 or Algorithm 8 with that of the AM al-
gorithm (Haario et al. 1999), for 10,000 iterations for B0.03

and 20,000 iterations for B0.1 and n = 3 components for the
fitted mixture. The results are summarised in Table 1 seem
comparable, although our algorithm seems to be more robust
in the difficult situation where π = B0.1.

We further tested the ability of the algorithm to properly
sample from the target distribution by comparing empirical
and exact quantiles. The results and methodology are sum-
marised in Tables 2 and 3.

The fitted mixture makes it possible to estimate the nor-
malising constant of the target distribution π , using the so-
called “harmonic mean” estimator, which relies on the iden-
tity

∫
X

q̆θ (x)

π̃(x)
π(x)dx = 1∫

X π̃(x)dx
=: 1/Z, (40)

where π̃ (x) is proportional to π(x), but unormalised. Note
that q̆θ (x) provides us with a potentially reasonable instru-
mental distribution since it is adapted to fit π and might have
thinner tails than π. This is estimator is notoriously known
to be unstable whenever the variance of q̆θ (x)/π̃(x) under π

is large and the suggested approach might in some situations

Table 4 Harmonic mean estimator of the normalizing constant of
centered spherical Gaussian distributions and banana-shaped distrib-
utions F0.03(X), obtained by applying to a Gaussian N (0, S) with
diag(S) = [100,1, . . . ,1] in d dimensions; Z is the partition function’s
analytical value

nx π1 = N (0, Inx ) π2 = B0.03

Ẑ Z Ẑ Z

2 6.27 ± 0.01 6.28 68.9 ± 15.5 62.831

5 97.53 ± 0.23 98.96 1013.7 ± 178.8 989.577

7 601.72 ± 2.57 621.77 6204.6 ± 1337.6 6217.696

remedy this. In the case of the banana shaped distribution we
choose π̃(x) such that

Z = det(2π�)1/2.

We present results for both B0.03 and N (0, Inx ), based on
50 runs, in Table 4.

For each of them the chain was run with three adaptive
Gaussian components for 100,000 iterations. The estimator
Ẑ was calculated according with the harmonic mean estima-
tor after a burn-in period of 80,000 iterations. The estimation
of the Gaussian target’s partition function is very accurate.
In seven dimensions Z is somewhat underestimated suggest-
ing that the chain was not run long enough to reach its sta-
tionary regime. The second target’s non-linearity leads to a
significant deterioration of the simulation results. While the
sample mean is close to the partition function’s true value
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Fig. 4 Top: Trace of the
positions s1, s2 for k = 2
corresponding to iterations
1, . . . ,40,000. Bottom:
Histograms of the dates for
k = 2 after 200,000 iterations
(with the first 10,000 samples
discarded)

the sample deviation is very large. A possible explanation is
that the chain has to be run much longer in this setting to
ensure convergence of the harmonic mean estimator.

A possible use of this result is that of the estimation of
posterior model probabilities.

6.3 Mine disaster data

The dataset of this classic example consists of the recorded
dates (in days) {y(i)} at which mine disaster have occurred
over a period covering 1851–1962. The data is modelled
as a Poisson process with intensity x(t) modelled as a step
function consisting of k + 1 plateaux with starting positions
s(0) = 0 < s(1) < s(2) < · · · < s(k + 1) = T and heights
h(0), h(1), . . . , h(k) that is

x(t) =
k+1∑
i=1

h(i − 1)I{s(i − 1) ≤ t < s(i)}.

The unknowns are therefore k, s := {s(i)} and h := {h(i)}.
With the priors of Green (1995) the log-posterior distribu-
tion, logπ(x), is the sum of the three following terms with

−� + k log(�) − log(�(k + 1)) + log�(2(k + 1))

− (2k + 1) logT ,

(k + 1) (α logβ − log�(α)) + (α − 1)

k+1∑
i=1

log(h(i − 1))

− β

k+1∑
i=1

h(i − 1) +
k+1∑
i=1

log(s(i) − s(i − 1)),

k+1∑
i=1

logh(i − 1)

n∑
j=1

I{s(i − 1) ≤ y(j) < s(i)}

−
k+1∑
i=1

h(i − 1)(s(i) − s(i − 1)).

In our numerical experiments we took α = 1.0, β = 200 and
� = 3, which is in line with Green (1995) and Hastie (2005),
and simply provided our adaptive algorithm, a combination
of the components described in Sect. 5, i.e. a mixture of Al-
gorithms 4–6 and 8, with the log-posterior above. We report
here the results obtained using one normal component, and
did not observe any significant different with 2 or 3 com-
ponents. One of the difficulty with the posterior distribution
of interest is that it involves very different scales and var-
ious dependence patterns between the parameters. We ran
the algorithm for fixed k = 1,2,3,4,5,6. In all scenarios
the components of h and s were initialised at 1000 and the
initial value for the estimate of the covariance matrix of π

was set to 10 × I2k+1. In order to comment on the behaviour
of the adaptive procedure, we primarily focus on the case
k = 2 in order to maintain the legibility of the various fig-
ures. In Figs. 4–6 and 7 we present the traces and in relevant
cases histograms for {si}, {hi}, {λi} (the scaling coefficient
of the global RWM update), the corresponding running ex-
pected acceptance probabilities, {(λ1

i , . . . , λ
2k+1
i )} (the scal-

ing coefficients of the componentwise RWM updates) and
their corresponding running expected acceptance probabili-
ties. In this case the algorithm was ran for 200,000 iterations.
The reported robust behaviour of the algorithm is typical of
what we have systematically observed for all the realisations
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Fig. 5 Top: Trace of the
intensities h0, h1, h2 for k = 2
corresponding to iterations
1, . . . ,40,000. Bottom:
Histogram of the intensities for
k = 2 after 200,000 iterations
(with the first 10,000 samples
discarded)

Fig. 6 Top: Trace of the
“global” RWM update’s log(λ).
Bottom: Running expected
acceptance probability of the
“global” RWM update

of the algorithm that we have run. Despite poor initialisa-
tions of s, h and the parameters of the algorithm (observe
in particular the high rejection rate during the first 10,000
iterations particularly visible in Fig. 5) the procedure man-
ages to rapidly recover. The histograms show that our results
are in accordance with the results found in Hastie (2005).
The behaviour of {λi} and {(λ1

i , . . . , λ
2k+1
i )} and their corre-

sponding running expected acceptance probabilities demon-
strate both the interest of adapting these parameters in the
initial phase of the algorithm, and the notion of bold and

timid moves: small acceptance probabilities prompt the use
of smaller scaling factors in order to improve exploration
and timid moves seem to improve their performance faster
than bold moves (whose expected acceptance probabilities
is multiplied by 5 in the course of the first 200,000 itera-
tions). Naturally we observed that not all the parameters of
the algorithm seem to have converged, or stabilised around
fixed values, whereas the histograms for s and h seem to
be in agreement with previously reported results (e.g. Hastie
2005). The observed performance of the algorithm is in our
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Fig. 7 k = 2: Top: Trace of the
“local” RWM updates’ log(λ)’s.
Bottom: Running expected
acceptance probability of the
“local” RWM updates

Fig. 8 Top: Trace of the
positions s1, s2, s3 for k = 3
corresponding to iterations
1, . . . ,40,000. Bottom: Trace of
the intensities h0, h1, h2, h3 for
k = 3 corresponding to
iterations 1, . . . ,40,000

view illustrative of three crucial points discussed earlier in
the paper:

1. Vanishing adaptation does not require convergence to en-
sure that ergodic averages are asymptotically correct,

2. but at the same time the study of the convergence prop-
erties of {θi} is fundamental since it ensures that this se-
quence is guaranteed to eventually approach the optimal
values defined by our criteria. It is indeed the conver-
gence properties of {θi} which explain both the observed

good behaviour of {λi} and {(λ1
i , . . . , λ

2k+1
i )} in Figs. 6

and 7. As a result, and provided that we are ready to run
the algorithm longer then one can expect to be able to
obtain “better” values for the tuning parameter.

3. The user might decide to use this run as a preliminary
run to determine a satisfactory tuning parameter θ which
can then be used in a standard non-adaptive MCMC al-
gorithm, for which none of the ergodicity problems dis-
cussed earlier exist. Effectively, if this is the choice made,
this preliminary run is simply an optimisation procedure,
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Fig. 9 k = 3: Top: Trace of the
“local” RWM updates’ log(λ)’s.
Bottom: Running expected
acceptance probability of the
“local” RWM updates

which however requires the use of samples at least ap-
proximately distributed according to the posterior distri-
bution π , therefore justifying the study of the ergodicity
properties of such algorithms.

We report the corresponding results for the case k = 3 in
Figs. 8–9. Due to the positivity constraints the harmonic
mean estimator in (40) cannot be mathematically exact. De-
spite finding results similar to those of Green (2003) and
Hastie (2005) we cannot in this approach as a reliable one.
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